BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 23503091)

  • 1. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared.
    Ou JY; Plum E; Zhang J; Zheludev NI
    Nat Nanotechnol; 2013 Apr; 8(4):252-5. PubMed ID: 23503091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconfigurable nanomechanical photonic metamaterials.
    Zheludev NI; Plum E
    Nat Nanotechnol; 2016 Jan; 11(1):16-22. PubMed ID: 26740040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial.
    Ou JY; Plum E; Zhang J; Zheludev NI
    Adv Mater; 2016 Jan; 28(4):729-33. PubMed ID: 26619205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giant Electro-Optical Effect through Electrostriction in a Nanomechanical Metamaterial.
    Karvounis A; Gholipour B; MacDonald KF; Zheludev NI
    Adv Mater; 2019 Jan; 31(1):e1804801. PubMed ID: 30398682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Ba0.6 Sr0.4 TiO3 -Silicon Hybrid Metamaterial Device in Terahertz Regime.
    Wu L; Du T; Xu N; Ding C; Li H; Sheng Q; Liu M; Yao J; Wang Z; Lou X; Zhang W
    Small; 2016 May; 12(19):2610-5. PubMed ID: 27007192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconfigurable metamaterials for terahertz wave manipulation.
    Hashemi MR; Cakmakyapan S; Jarrahi M
    Rep Prog Phys; 2017 Sep; 80(9):094501. PubMed ID: 28590254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching.
    Zografopoulos DC; Beccherelli R
    Sci Rep; 2015 Aug; 5():13137. PubMed ID: 26272652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry.
    Neira AD; Wurtz GA; Ginzburg P; Zayats AV
    Opt Express; 2014 May; 22(9):10987-94. PubMed ID: 24921796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switching terahertz waves with gate-controlled active graphene metamaterials.
    Lee SH; Choi M; Kim TT; Lee S; Liu M; Yin X; Choi HK; Lee SS; Choi CG; Choi SY; Zhang X; Min B
    Nat Mater; 2012 Nov; 11(11):936-41. PubMed ID: 23023552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconfigurable 3D plasmonic metamolecules.
    Kuzyk A; Schreiber R; Zhang H; Govorov AO; Liedl T; Liu N
    Nat Mater; 2014 Sep; 13(9):862-6. PubMed ID: 24997737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconfigurable terahertz metamaterials: From fundamental principles to advanced 6G applications.
    Xu C; Ren Z; Wei J; Lee C
    iScience; 2022 Feb; 25(2):103799. PubMed ID: 35198867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconfigurable MEMS Fano metasurfaces with multiple-input-output states for logic operations at terahertz frequencies.
    Manjappa M; Pitchappa P; Singh N; Wang N; Zheludev NI; Lee C; Singh R
    Nat Commun; 2018 Oct; 9(1):4056. PubMed ID: 30283070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chalcogenide Phase Change Material for Active Terahertz Photonics.
    Pitchappa P; Kumar A; Prakash S; Jani H; Venkatesan T; Singh R
    Adv Mater; 2019 Mar; 31(12):e1808157. PubMed ID: 30687971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical modulation of multifunctional responses in three-dimensional terahertz metamaterials.
    Han D; Zhang L; Chen X
    Opt Express; 2021 Oct; 29(21):32853-32864. PubMed ID: 34809108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors.
    Nouman MT; Kim HW; Woo JM; Hwang JH; Kim D; Jang JH
    Sci Rep; 2016 May; 6():26452. PubMed ID: 27194128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic mode coupling in terahertz metamaterials.
    Su X; Ouyang C; Xu N; Tan S; Gu J; Tian Z; Singh R; Zhang S; Yan F; Han J; Zhang W
    Sci Rep; 2015 Jun; 5():10823. PubMed ID: 26035057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials.
    Seren HR; Zhang J; Keiser GR; Maddox SJ; Zhao X; Fan K; Bank SR; Zhang X; Averitt RD
    Light Sci Appl; 2016 May; 5(5):e16078. PubMed ID: 30167165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoinduced handedness switching in terahertz chiral metamolecules.
    Zhang S; Zhou J; Park YS; Rho J; Singh R; Nam S; Azad AK; Chen HT; Yin X; Taylor AJ; Zhang X
    Nat Commun; 2012 Jul; 3():942. PubMed ID: 22781755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-spectral materials: hybridisation of optical plasmonic filters, a mid infrared metamaterial absorber and a terahertz metamaterial absorber.
    Grant J; McCrindle IJ; Cumming DR
    Opt Express; 2016 Feb; 24(4):3451-63. PubMed ID: 26907004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.