These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Efficient phase-matched third harmonic generation in an asymmetric plasmonic slot waveguide. Wu T; Sun Y; Shao X; Shum PP; Huang T Opt Express; 2014 Jul; 22(15):18612-24. PubMed ID: 25089480 [TBL] [Abstract][Full Text] [Related]
6. Strong enhancement of third harmonic generation from a Tamm plasmon multilayer structure with WS Zhao J; Lu H; Zheng J; Li D; Zhang Y; Gan X; Zhao J Opt Lett; 2024 Jun; 49(11):3130-3133. PubMed ID: 38824345 [TBL] [Abstract][Full Text] [Related]
7. Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface. Konopsky VN; Alieva EV Phys Rev Lett; 2006 Dec; 97(25):253904. PubMed ID: 17280356 [TBL] [Abstract][Full Text] [Related]
8. Tamm-plasmon polaritons in one-dimensional photonic quasi-crystals. Shukla MK; Das R Opt Lett; 2018 Feb; 43(3):362-365. PubMed ID: 29400859 [TBL] [Abstract][Full Text] [Related]
9. Enhanced nonlinear optical effects due to the excitation of optical Tamm plasmon polaritons in one-dimensional photonic crystal structures. Lee KJ; Wu JW; Kim K Opt Express; 2013 Nov; 21(23):28817-23. PubMed ID: 24514394 [TBL] [Abstract][Full Text] [Related]
10. Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons. Rahman SS; Klein T; Klembt S; Gutowski J; Hommel D; Sebald K Sci Rep; 2016 Oct; 6():34392. PubMed ID: 27698359 [TBL] [Abstract][Full Text] [Related]
11. Clarifying the origin of third-harmonic generation from film-coupled nanostripes. Liu X; Larouche S; Bowen P; Smith DR Opt Express; 2015 Jul; 23(15):19565-74. PubMed ID: 26367614 [TBL] [Abstract][Full Text] [Related]
12. Surface-enhanced optical third-harmonic generation in Ag island films. Kim EM; Elovikov SS; Murzina TV; Nikulin AA; Aktsipetrov OA; Bader MA; Marowsky G Phys Rev Lett; 2005 Nov; 95(22):227402. PubMed ID: 16384265 [TBL] [Abstract][Full Text] [Related]
14. Nonreciprocal resonant transmission/reflection based on a one-dimensional photonic crystal adjacent to the magneto-optical metal film. He C; Sun XC; Zhang Z; Yuan CS; Lu MH; Chen YF; Sun C Opt Express; 2013 Nov; 21(23):28933-40. PubMed ID: 24514407 [TBL] [Abstract][Full Text] [Related]
15. Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with graphene. Wang X; Liang Y; Wu L; Guo J; Dai X; Xiang Y Opt Lett; 2018 Sep; 43(17):4256-4259. PubMed ID: 30160765 [TBL] [Abstract][Full Text] [Related]
17. Wide-angle Spectrally Selective Perfect Absorber by Utilizing Dispersionless Tamm Plasmon Polaritons. Xue CH; Wu F; Jiang HT; Li Y; Zhang YW; Chen H Sci Rep; 2016 Dec; 6():39418. PubMed ID: 27991565 [TBL] [Abstract][Full Text] [Related]
18. Wavelength- and Angle-Selective Photodetectors Enabled by Graphene Hot Electrons with Tamm Plasmon Polaritons. Huang CH; Wu CH; Bikbaev RG; Ye MJ; Chen CW; Wang TJ; Timofeev IV; Lee W; Chen KP Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839064 [TBL] [Abstract][Full Text] [Related]
19. Perfect optical absorbers in a wide range of incidence by photonic heterostructures containing layered hyperbolic metamaterials. Lu G; Wu F; Zheng M; Chen C; Zhou X; Diao C; Liu F; Du G; Xue C; Jiang H; Chen H Opt Express; 2019 Feb; 27(4):5326-5336. PubMed ID: 30876132 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous perfect phase matching for second and third harmonic generations in ZnS/YF(3) photonic crystal for visible emissions. Lu W; Xie P; Zhang ZQ; Wong GK; Wong KS Opt Express; 2006 Dec; 14(25):12353-8. PubMed ID: 19529665 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]