BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23503603)

  • 41. Effect of the Electronic State of Cu, Ag, and Au on Diesel Soot Abatement: Performance of Cu/ZnO, Ag/ZnO, and Au/ZnO Catalysts.
    Corro G; Flores JA; Pacheco-Aguirre F; Pal U; Bañuelos F; Torralba R; Olivares-Xometl O
    ACS Omega; 2019 Mar; 4(3):5795-5804. PubMed ID: 31459731
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ag/Au mixed sites promote oxidative coupling of methanol on the alloy surface.
    Xu B; Siler CG; Madix RJ; Friend CM
    Chemistry; 2014 Apr; 20(16):4646-52. PubMed ID: 24633724
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Room-Temperature Wet Chemical Synthesis of Au NPs/TiH
    Amin MA; Fadlallah SA; Alosaimi GS; Ahmed EM; Mostafa NY; Roussel P; Szunerits S; Boukherroub R
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):30115-30126. PubMed ID: 28771327
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sonochemically synthesized mono and bimetallic Au-Ag reduced graphene oxide based nanocomposites with enhanced catalytic activity.
    Neppolian B; Wang C; Ashokkumar M
    Ultrason Sonochem; 2014 Nov; 21(6):1948-53. PubMed ID: 24582660
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Boosting the Photocatalysis of Plasmonic Au-Cu Nanocatalyst by AuCu-TiO
    Zhu B; Li X; Li Y; Liu J; Zhang X
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445665
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanoporous gold as an active low temperature catalyst toward CO oxidation in hydrogen-rich stream.
    Li D; Zhu Y; Wang H; Ding Y
    Sci Rep; 2013 Oct; 3():3015. PubMed ID: 24145317
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Skeletal Ru/Cu catalysts prepared from crystalline and quasicrystalline ternary alloy precursors: characterization by X-ray absorption spectroscopy and CO oxidation.
    Highfield J; Liu T; Loo YS; Grushko B; Borgna A
    Phys Chem Chem Phys; 2009 Feb; 11(8):1196-208. PubMed ID: 19209363
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanoporous Au Formation on Au Substrates via High Voltage Electrolysis.
    Artmann E; Forschner L; Schüttler KM; Al-Shakran M; Jacob T; Engstfeld AK
    Chemphyschem; 2023 Mar; 24(5):e202200645. PubMed ID: 36328970
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bimetallic nanocomposite (Ag-Au, Ag-Pd, Au-Pd) synthesis using gum kondagogu a natural biopolymer and their catalytic potentials in the degradation of 4-nitrophenol.
    Velpula S; Beedu SR; Rupula K
    Int J Biol Macromol; 2021 Nov; 190():159-169. PubMed ID: 34480903
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dilute Alloys Based on Au, Ag, or Cu for Efficient Catalysis: From Synthesis to Active Sites.
    Lee JD; Miller JB; Shneidman AV; Sun L; Weaver JF; Aizenberg J; Biener J; Boscoboinik JA; Foucher AC; Frenkel AI; van der Hoeven JES; Kozinsky B; Marcella N; Montemore MM; Ngan HT; O'Connor CR; Owen CJ; Stacchiola DJ; Stach EA; Madix RJ; Sautet P; Friend CM
    Chem Rev; 2022 May; 122(9):8758-8808. PubMed ID: 35254051
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preparation of nanosized Pt-Au alloy catalyst and its activity in methanol oxidation.
    Kim KJ; Kim YH; Jeong WJ; Jeong SW; Park JC; Ahn HG
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4073-6. PubMed ID: 18047122
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Atmospheric-Pressure Cold Plasma Activating Au/P25 for CO Oxidation: Effect of Working Gas.
    Zhang J; Di L; Yu F; Duan D; Zhang X
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30235799
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts.
    Widmann D; Behm RJ
    Acc Chem Res; 2014 Mar; 47(3):740-9. PubMed ID: 24555537
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bifunctional Interface of Au and Cu for Improved CO2 Electroreduction.
    Back S; Kim JH; Kim YT; Jung Y
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23022-7. PubMed ID: 27526778
    [TBL] [Abstract][Full Text] [Related]  

  • 55.
    Gößler M; Hengge E; Bogar M; Albu M; Knez D; Amenitsch H; Würschum R
    J Phys Chem C Nanomater Interfaces; 2022 Mar; 126(8):4037-4047. PubMed ID: 35273676
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dynamic Atom Clusters on AuCu Nanoparticle Surface during CO Oxidation.
    Luo L; Chen S; Xu Q; He Y; Dong Z; Zhang L; Zhu J; Du Y; Yang B; Wang C
    J Am Chem Soc; 2020 Feb; 142(8):4022-4027. PubMed ID: 32017551
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced catalytic activity for CO oxidation by the metal-oxide perimeter of TiO
    Lee SW; Song JT; Kim J; Oh J; Park JY
    Nanoscale; 2018 Feb; 10(8):3911-3917. PubMed ID: 29423473
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Facile electrochemical synthesis of dilute AuCu alloy nanostructures for selective and long-term stable CO
    Kim J; Song JT; Oh J
    J Chem Phys; 2020 Aug; 153(5):054702. PubMed ID: 32770889
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly Active AuCu-Based Catalysts for Acetylene Hydrochlorination Prepared Using Organic Aqua Regia.
    He H; Zhao J; Wang B; Yue Y; Sheng G; Wang Q; Yu L; Hu ZT; Li X
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31013614
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of the Parent Alloy Microstructure on the Thermal Stability of Nanoporous Au.
    Pinna A; Pia G; Licheri R; Pilia L
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.