BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 23503635)

  • 1. Facile dimethylarsenic exchange and pyramidal inversion in its cysteine and glutathione adducts.
    Bohle DS; Gu Y
    Org Biomol Chem; 2013 Apr; 11(16):2578-81. PubMed ID: 23503635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substituent effects on the binding constants of arsenical-dithiol adducts.
    Dill K; Huang LH; McGown EL; Youn SH; O'Connor RJ
    Res Commun Chem Pathol Pharmacol; 1991 Jun; 72(3):367-70. PubMed ID: 1947439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complexes of diphenylarsinic acid and phenylarsonic acid with thiols: a 1H and 13C NMR study.
    Nakayama T; Isobe T; Nakamiya K; Edmonds JS; Shibata Y; Morita M
    Magn Reson Chem; 2005 Jul; 43(7):543-50. PubMed ID: 15858784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation energies and formation rate constants for organic arsenical-antidote adducts as determined by dynamic NMR spectroscopy.
    Dill K; Huang LH; Bearden DW; McGown EL; O'Connor RJ
    Chem Res Toxicol; 1991; 4(3):295-9. PubMed ID: 1912312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibrium characterization of the As(III)-cysteine and the As(III)-glutathione systems in aqueous solution.
    Rey NA; Howarth OW; Pereira-Maia EC
    J Inorg Biochem; 2004 Jun; 98(6):1151-9. PubMed ID: 15149827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols.
    Styblo M; Serves SV; Cullen WR; Thomas DJ
    Chem Res Toxicol; 1997 Jan; 10(1):27-33. PubMed ID: 9074799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quenching of quercetin quinone/quinone methides by different thiolate scavengers: stability and reversibility of conjugate formation.
    Awad HM; Boersma MG; Boeren S; Van Bladeren PJ; Vervoort J; Rietjens IM
    Chem Res Toxicol; 2003 Jul; 16(7):822-31. PubMed ID: 12870884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disulfide bond switches.
    Finkel E
    Nat Biotechnol; 2002 Sep; 20(9):887. PubMed ID: 12205507
    [No Abstract]   [Full Text] [Related]  

  • 9. Stability and structure-forming properties of the two disulfide bonds of alpha-conotoxin GI.
    Kaerner A; Rabenstein DL
    Biochemistry; 1999 Apr; 38(17):5459-70. PubMed ID: 10220333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New mixed disulfides of L-cysteine derivatives and of glutathione with diethyldithiocarbamic acid and 2-mercaptoethanesulfonic acid.
    Rajca A; Bertram B; Eisenbarth J; Wiessler M
    Arzneimittelforschung; 1990 Mar; 40(3):282-6. PubMed ID: 2161235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The reaction of sulfhydryl groups with carbonyl compounds.
    Włodek L
    Acta Biochim Pol; 1988; 35(4):307-17. PubMed ID: 3247807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive sulfur species: aqueous chemistry of sulfenyl thiocyanates.
    Ashby MT; Aneetha H
    J Am Chem Soc; 2004 Aug; 126(33):10216-7. PubMed ID: 15315413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational state of ovalbumin at acidic pH as evaluated by a novel approach utilizing intrachain sulfhydryl-mixed disulfide exchange reactions.
    Tatsumi E; Yoshimatsu D; Hirose M
    Biochemistry; 1998 Sep; 37(35):12351-9. PubMed ID: 9724549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disulfide exchange in domain 2 of CD4 is required for entry of HIV-1.
    Matthias LJ; Yam PT; Jiang XM; Vandegraaff N; Li P; Poumbourios P; Donoghue N; Hogg PJ
    Nat Immunol; 2002 Aug; 3(8):727-32. PubMed ID: 12089508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diastereoisomerism of thiol complexes of arsenic acids and pseudoasymmetry of arsenic: a 1H and 13C NMR study.
    Edmonds JS; Nakayama T; Kondo T; Morita M
    Magn Reson Chem; 2006 Feb; 44(2):151-62. PubMed ID: 16358296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for the formation of Michael adducts from reactions of (E,E)-muconaldehyde with glutathione and other thiols.
    Henderson AP; Bleasdale C; Delaney K; Lindstrom AB; Rappaport SM; Waidyanatha S; Watson WP; Golding BT
    Bioorg Chem; 2005 Oct; 33(5):363-73. PubMed ID: 16005934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of a reversible covalent-bond-forming reaction observed at the single-molecule level.
    Shin SH; Luchian T; Cheley S; Braha O; Bayley H
    Angew Chem Int Ed Engl; 2002 Oct; 41(19):3707-9; 3523. PubMed ID: 12370938
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of superoxide dismutase mimics on radical adduct formation during the reaction between peroxynitrite and thiols--an ESR-spin trapping study.
    Karoui H; Hogg N; Joseph J; Kalyanaraman B
    Arch Biochem Biophys; 1996 Jun; 330(1):115-24. PubMed ID: 8651684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiolate bridging and metal exchange in adducts of a zinc finger model and Pt(II) complexes: biomimetic studies of protein/Pt/DNA interactions.
    Almaraz E; de Paula QA; Liu Q; Reibenspies JH; Darensbourg MY; Farrell NP
    J Am Chem Soc; 2008 May; 130(19):6272-80. PubMed ID: 18422317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive absorption of ozone by aqueous biomolecule solutions: implications for the role of sulfhydryl compounds as targets for ozone.
    Kanofsky JR; Sima PD
    Arch Biochem Biophys; 1995 Jan; 316(1):52-62. PubMed ID: 7840660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.