These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 23503741)

  • 1. Pulsed-source time-resolved phosphorimetry: comparison of a commercial gated photomultiplier with a specially wired ungated photomultiplier.
    Persvik Ø; Melø TB; Naqvi KR
    Photochem Photobiol Sci; 2013 Jun; 12(6):1110-3. PubMed ID: 23503741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase-modulation fluorometer using a dynode-voltage burst-modulated photomultiplier tube.
    Iwata T; Araki T
    Appl Spectrosc; 2005 Aug; 59(8):1049-53. PubMed ID: 16105215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal linearity, gain stability, and gating in photomultipliers: application to differential absorption lidars.
    Bristow MP; Bundy DH; Wright AG
    Appl Opt; 1995 Jul; 34(21):4437-52. PubMed ID: 21052278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autoregressive-model-based fluorescence-lifetime measurements by phase-modulation fluorometry using a pulsed-excitation light source and a high-gain photomultiplier tube.
    Iwata T; Ito R; Mizutani Y; Araki T
    Appl Spectrosc; 2009 Nov; 63(11):1256-61. PubMed ID: 19891834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel compensation method for the anode gain non-uniformity of multi-anode photomultiplier tubes.
    Lee CM; Il Kwon S; Ko GB; Ito M; Yoon HS; Lee DS; Hong SJ; Lee JS
    Phys Med Biol; 2012 Jan; 57(1):191-207. PubMed ID: 22156011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gated photomultiplier response characterization for DIAL measurements.
    Lee HS; Schwemmer GK; Korb CL; Dombrowski M; Prasad C
    Appl Opt; 1990 Aug; 29(22):3303-15. PubMed ID: 20567413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depolarization ratio measurement using single photomultiplier tube in micropulse lidar.
    Dubey PK; Jain SL; Arya BC; Kulkarni PS
    Rev Sci Instrum; 2009 May; 80(5):053111. PubMed ID: 19485496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting Temporal Changes of Self-Absorption in a Laser-Induced Copper Plasma from Time-Resolved Photomultiplier Signal Emission Profiles.
    Fu Y; Warren RA; Jones WB; Smith BW; Omenetto N
    Appl Spectrosc; 2019 Feb; 73(2):163-170. PubMed ID: 30345795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple photomultiplier tube internal-gating method for use in subnanosecond time-resolved spectroscopy.
    Iwata T; Takasu T; Araki T
    Appl Spectrosc; 2003 Sep; 57(9):1145-50. PubMed ID: 14611045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A remotely triggered fast neutron detection instrument based on a plastic organic scintillator.
    Jones AR; Aspinall MD; Joyce MJ
    Rev Sci Instrum; 2018 Feb; 89(2):023115. PubMed ID: 29495805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of photomultipliers in the context of laser-induced incandescence.
    Mansmann R; Dreier T; Schulz C
    Appl Opt; 2017 Oct; 56(28):7849-7860. PubMed ID: 29047769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absolute optical responsivity down to the photon counting level with a photomultiplier tube.
    Tanabe M; Niwa K; Kinoshita K
    Rev Sci Instrum; 2017 Apr; 88(4):043104. PubMed ID: 28456233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating photomultiplier tube nonlinearities in high-speed phosphor thermometry using light emitting diode simulated decay curves.
    Feuk H; Nilsson S; Aldén M; Richter M
    Rev Sci Instrum; 2021 Dec; 92(12):123102. PubMed ID: 34972472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast microchannel plate photomultipliers.
    Kume H; Koyama K; Nakatsugawa K; Suzuki S; Fatlowitz D
    Appl Opt; 1988 Mar; 27(6):1170-8. PubMed ID: 20531532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fusion neutron detector for time-of-flight measurements in z-pinch and plasma focus experiments.
    Klir D; Kravarik J; Kubes P; Rezac K; Litseva E; Tomaszewski K; Karpinski L; Paduch M; Scholz M
    Rev Sci Instrum; 2011 Mar; 82(3):033505. PubMed ID: 21456735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A silicon photomultiplier readout for time of flight neutron spectroscopy with gamma-ray detectors.
    Pietropaolo A; Gorini G; Festa G; Andreani C; De Pascale MP; Reali E; Grazzi F; Schooneveld EM
    Rev Sci Instrum; 2009 Sep; 80(9):095108. PubMed ID: 19791965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New methods of data calibration for high power-aperture lidar.
    Guan S; Yang G; Chang Q; Cheng X; Yang Y; Gong S; Wang J
    Opt Express; 2013 Mar; 21(6):7768-85. PubMed ID: 23546158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delayed fluorescence from the photosynthetic reaction center measured by electronic gating of the photomultiplier.
    Filus Z; Laczkó G; Wraight CA; Maróti P
    Biopolymers; 2004 May-Jun 5; 74(1-2):92-5. PubMed ID: 15137102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photomultiplier voltage setting: possible important source of variability in molecular equivalents of soluble fluorochrome (MESF) calculation?
    Rigolin GM; Lanza F; Castoldi G
    Cytometry; 1995 Aug; 20(4):362-8. PubMed ID: 7587725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation and compensation of the nonlinear response in photomultiplier tubes for quantitative single-shot measurements.
    Knappe C; Lindén J; Abou Nada F; Richter M; Aldén M
    Rev Sci Instrum; 2012 Mar; 83(3):034901. PubMed ID: 22462946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.