These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 23503775)

  • 81. Neuroendocrine control of ionic balance in zebrafish.
    Kwong RW; Kumai Y; Perry SF
    Gen Comp Endocrinol; 2016 Aug; 234():40-6. PubMed ID: 27179885
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Zebrafish Mutant Lines Reveal the Interplay between
    Dinarello A; Tesoriere A; Martini P; Fontana CM; Volpato D; Badenetti L; Terrin F; Facchinello N; Romualdi C; Carnevali O; Dalla Valle L; Argenton F
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269817
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Early-life stress influences ion balance in developing zebrafish (Danio rerio).
    Hare AJ; Zimmer AM; LePabic R; Morgan AL; Gilmour KM
    J Comp Physiol B; 2021 Jan; 191(1):69-84. PubMed ID: 33064210
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Physiological protective action of dissolved organic carbon on ion regulation and nitrogenous waste excretion of zebrafish (Danio rerio) exposed to low pH in ion-poor water.
    Duarte RM; Wood CM; Val AL; Smith DS
    J Comp Physiol B; 2018 Sep; 188(5):793-807. PubMed ID: 29948161
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Zebrafish as a Model System for Investigating the Compensatory Regulation of Ionic Balance during Metabolic Acidosis.
    Lewis L; Kwong RWM
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29621145
    [TBL] [Abstract][Full Text] [Related]  

  • 86.
    Araújo JDA; Ghelfi A; Val AL
    Front Genet; 2017; 8():114. PubMed ID: 28912799
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A role for sodium-chloride cotransporters in the rapid regulation of ion uptake following acute environmental acidosis: new insights from the zebrafish model.
    Kwong RW; Perry SF
    Am J Physiol Cell Physiol; 2016 Dec; 311(6):C931-C941. PubMed ID: 27784676
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Early-life glucocorticoids programme behaviour and metabolism in adulthood in zebrafish.
    Wilson KS; Tucker CS; Al-Dujaili EA; Holmes MC; Hadoke PW; Kenyon CJ; Denvir MA
    J Endocrinol; 2016 Jul; 230(1):125-42. PubMed ID: 27390302
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Dissolved organic carbon from the upper Rio Negro protects zebrafish (Danio rerio) against ionoregulatory disturbances caused by low pH exposure.
    Duarte RM; Smith DS; Val AL; Wood CM
    Sci Rep; 2016 Feb; 6():20377. PubMed ID: 26853589
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Osmoregulation in zebrafish: ion transport mechanisms and functional regulation.
    Guh YJ; Lin CH; Hwang PP
    EXCLI J; 2015; 14():627-59. PubMed ID: 26600749
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A role for transcription factor glial cell missing 2 in Ca2+ homeostasis in zebrafish, Danio rerio.
    Kumai Y; Kwong RW; Perry SF
    Pflugers Arch; 2015 Apr; 467(4):753-65. PubMed ID: 24893788
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The role of cAMP-mediated intracellular signaling in regulating Na+ uptake in zebrafish larvae.
    Kumai Y; Kwong RW; Perry SF
    Am J Physiol Regul Integr Comp Physiol; 2014 Jan; 306(1):R51-60. PubMed ID: 24259461
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The role of aquaporin and tight junction proteins in the regulation of water movement in larval zebrafish (Danio rerio).
    Kwong RW; Kumai Y; Perry SF
    PLoS One; 2013; 8(8):e70764. PubMed ID: 23967101
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Strategies for maintaining Na⁺ balance in zebrafish (Danio rerio) during prolonged exposure to acidic water.
    Kumai Y; Bahubeshi A; Steele S; Perry SF
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Sep; 160(1):52-62. PubMed ID: 21600298
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The tight junction protein claudin-b regulates epithelial permeability and sodium handling in larval zebrafish, Danio rerio.
    Kwong RW; Perry SF
    Am J Physiol Regul Integr Comp Physiol; 2013 Apr; 304(7):R504-13. PubMed ID: 23364531
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Evidence for a role of tight junctions in regulating sodium permeability in zebrafish (Danio rerio) acclimated to ion-poor water.
    Kwong RW; Kumai Y; Perry SF
    J Comp Physiol B; 2013 Feb; 183(2):203-13. PubMed ID: 22843140
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Claudin-5a in developing zebrafish brain barriers: another brick in the wall.
    Abdelilah-Seyfried S
    Bioessays; 2010 Sep; 32(9):768-76. PubMed ID: 20652895
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The physiology of fish at low pH: the zebrafish as a model system.
    Kwong RW; Kumai Y; Perry SF
    J Exp Biol; 2014 Mar; 217(Pt 5):651-62. PubMed ID: 24574381
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Cortisol regulates epithelial permeability and sodium losses in zebrafish exposed to acidic water.
    Kwong RW; Perry SF
    J Endocrinol; 2013 Jun; 217(3):253-64. PubMed ID: 23503775
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.