These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 23504178)
1. Patient-specific computational modeling of subendothelial LDL accumulation in a stenosed right coronary artery: effect of hemodynamic and biological factors. Sakellarios AI; Papafaklis MI; Siogkas P; Athanasiou LS; Exarchos TP; Stefanou K; Bourantas CV; Naka KK; Michalis LK; Parodi O; Fotiadis DI Am J Physiol Heart Circ Physiol; 2013 Jun; 304(11):H1455-70. PubMed ID: 23504178 [TBL] [Abstract][Full Text] [Related]
2. Endothelium resolving simulations of wall shear-stress dependent mass transfer of LDL in diseased coronary arteries. Kenjereš S; van der Krieke JP; Li C Comput Biol Med; 2019 Nov; 114():103453. PubMed ID: 31561097 [TBL] [Abstract][Full Text] [Related]
3. Wall shear stress on LDL accumulation in human RCAs. Soulis JV; Fytanidis DK; Papaioannou VC; Giannoglou GD Med Eng Phys; 2010 Oct; 32(8):867-77. PubMed ID: 20580302 [TBL] [Abstract][Full Text] [Related]
4. Computational modeling of LDL and albumin transport in an in vivo CT image-based human right coronary artery. Sun N; Torii R; Wood NB; Hughes AD; Thom SA; Xu XY J Biomech Eng; 2009 Feb; 131(2):021003. PubMed ID: 19102562 [TBL] [Abstract][Full Text] [Related]
5. Image-based computational simulation of sub-endothelial LDL accumulation in a human right coronary artery. Nouri M; Jalali F; Karimi G; Zarrabi K Comput Biol Med; 2015 Jul; 62():206-21. PubMed ID: 25957745 [TBL] [Abstract][Full Text] [Related]
6. Effects of transmural pressure and wall shear stress on LDL accumulation in the arterial wall: a numerical study using a multilayered model. Sun N; Wood NB; Hughes AD; Thom SA; Yun Xu X Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H3148-57. PubMed ID: 17277019 [TBL] [Abstract][Full Text] [Related]
7. Computational modeling of coupled blood-wall mass transport of LDL: effects of local wall shear stress. Olgac U; Kurtcuoglu V; Poulikakos D Am J Physiol Heart Circ Physiol; 2008 Feb; 294(2):H909-19. PubMed ID: 18083898 [TBL] [Abstract][Full Text] [Related]
9. Prediction of Atherosclerotic Plaque Development in an In Vivo Coronary Arterial Segment Based on a Multilevel Modeling Approach. Sakellarios AI; Raber L; Bourantas CV; Exarchos TP; Athanasiou LS; Pelosi G; Koskinas KC; Parodi O; Naka KK; Michalis LK; Serruys PW; Garcia-Garcia HM; Windecker S; Fotiadis DI IEEE Trans Biomed Eng; 2017 Aug; 64(8):1721-1730. PubMed ID: 28113248 [TBL] [Abstract][Full Text] [Related]
10. Fluid-structure interactions (FSI) based study of low-density lipoproteins (LDL) uptake in the left coronary artery. Chen X; Zhuang J; Huang H; Wu Y Sci Rep; 2021 Feb; 11(1):4803. PubMed ID: 33637804 [TBL] [Abstract][Full Text] [Related]
11. Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model. Koshiba N; Ando J; Chen X; Hisada T J Biomech Eng; 2007 Jun; 129(3):374-85. PubMed ID: 17536904 [TBL] [Abstract][Full Text] [Related]
12. Simulation of Low Density Lipoprotein (LDL) permeation into multilayer coronary arterial wall: Interactive effects of wall shear stress and fluid-structure interaction in hypertension. Roustaei M; Nikmaneshi MR; Firoozabadi B J Biomech; 2018 Jan; 67():114-122. PubMed ID: 29273220 [TBL] [Abstract][Full Text] [Related]
13. Quantifying the effect of side branches in endothelial shear stress estimates. Giannopoulos AA; Chatzizisis YS; Maurovich-Horvat P; Antoniadis AP; Hoffmann U; Steigner ML; Rybicki FJ; Mitsouras D Atherosclerosis; 2016 Aug; 251():213-218. PubMed ID: 27372207 [TBL] [Abstract][Full Text] [Related]
14. Transfer of Low-Density Lipoproteins in Coronary Artery Bifurcation Lesions with Stenosed Side Branch: Numerical Study. Fan Z; Liu X; Zhang P; Gu J; Ye X; Deng X Comput Math Methods Med; 2019; 2019():5297284. PubMed ID: 31737085 [TBL] [Abstract][Full Text] [Related]
15. Assessment of endothelial shear stress in patients with mild or intermediate coronary stenoses using coronary computed tomography angiography: comparison with invasive coronary angiography. Huang D; Muramatsu T; Li Y; Yang W; Nagahara Y; Chu M; Kitslaar P; Sarai M; Ozaki Y; Chatzizisis YS; Yan F; Reiber JHC; Wu R; Pu J; Tu S Int J Cardiovasc Imaging; 2017 Jul; 33(7):1101-1110. PubMed ID: 27796815 [TBL] [Abstract][Full Text] [Related]
16. Prediction of atherosclerotic disease progression using LDL transport modelling: a serial computed tomographic coronary angiographic study. Sakellarios A; Bourantas CV; Papadopoulou SL; Tsirka Z; de Vries T; Kitslaar PH; Girasis C; Naka KK; Fotiadis DI; Veldhof S; Stone GW; Reiber JH; Michalis LK; Serruys PW; de Feyter PJ; Garcia-Garcia HM Eur Heart J Cardiovasc Imaging; 2017 Jan; 18(1):11-18. PubMed ID: 26985077 [TBL] [Abstract][Full Text] [Related]
17. Natural History of Carotid Atherosclerosis in Relation to the Hemodynamic Environment. Sakellarios AI; Bizopoulos P; Papafaklis MI; Athanasiou L; Exarchos T; Bourantas CV; Naka KK; Patterson AJ; Young VE; Gillard JH; Parodi O; Michalis LK; Fotiadis DI Angiology; 2017 Feb; 68(2):109-118. PubMed ID: 27081091 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional modeling of oxidized-LDL accumulation and HDL mass transport in a coronary artery: a proof-of-concept study for predicting the region of atherosclerotic plaque development. Sakellarios AI; Siogkas PK; Athanasiou LS; Exarchos TP; Papafaklis MI; Bourantas CV; Naka KK; Michalis LK; Filipovic N; Parodi O; Fotiadis DI Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4513-6. PubMed ID: 24110737 [TBL] [Abstract][Full Text] [Related]
19. Mass transport of low density lipoprotein in reconstructed hemodynamic environments of human carotid arteries: the role of volume and solute flux through the endothelium. Kim S; Giddens DP J Biomech Eng; 2015 Apr; 137(4):041007. PubMed ID: 25363359 [TBL] [Abstract][Full Text] [Related]