BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23504342)

  • 1. Measurement properties of the high-level mobility assessment tool for mild traumatic brain injury.
    Kleffelgaard I; Roe C; Sandvik L; Hellstrom T; Soberg HL
    Phys Ther; 2013 Jul; 93(7):900-10. PubMed ID: 23504342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of reliability, validity, and responsiveness of the mini-BESTest and Berg Balance Scale in patients with balance disorders.
    Godi M; Franchignoni F; Caligari M; Giordano A; Turcato AM; Nardone A
    Phys Ther; 2013 Feb; 93(2):158-67. PubMed ID: 23023812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The concurrent validity and responsiveness of the high-level mobility assessment tool for measuring the mobility limitations of people with traumatic brain injury.
    Williams G; Robertson V; Greenwood K; Goldie P; Morris ME
    Arch Phys Med Rehabil; 2006 Mar; 87(3):437-42. PubMed ID: 16500181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The concurrent validity and responsiveness of the high-level mobility assessment tool for mobility limitations in people with multitrauma orthopedic injuries.
    Williams G; Hill B; Kahn M
    PM R; 2014 Mar; 6(3):235-40. PubMed ID: 24056162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-level mobility skills in children and adolescents with traumatic brain injury.
    Kissane AL; Eldridge BJ; Kelly S; Vidmar S; Galea MP; Williams GP
    Brain Inj; 2015; 29(13-14):1711-6. PubMed ID: 26479336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Level Mobility Assessment Tool (HiMAT): interrater reliability, retest reliability, and internal consistency.
    Williams GP; Greenwood KM; Robertson VJ; Goldie PA; Morris ME
    Phys Ther; 2006 Mar; 86(3):395-400. PubMed ID: 16506875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Psychometric properties of the Mini-Balance Evaluation Systems Test (Mini-BESTest) in community-dwelling individuals with chronic stroke.
    Tsang CS; Liao LR; Chung RC; Pang MY
    Phys Ther; 2013 Aug; 93(8):1102-15. PubMed ID: 23559522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Test-re-test reproducibility of activity capacity measures for children with an acquired brain injury.
    Baque E; Barber L; Sakzewski L; Boyd RN
    Brain Inj; 2016; 30(9):1143-9. PubMed ID: 27314152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Community Balance and Mobility Scale--a balance measure for individuals with traumatic brain injury.
    Howe JA; Inness EL; Venturini A; Williams JI; Verrier MC
    Clin Rehabil; 2006 Oct; 20(10):885-95. PubMed ID: 17008340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Further development of the High-level Mobility Assessment Tool (HiMAT).
    Williams G; Pallant J; Greenwood K
    Brain Inj; 2010; 24(7-8):1027-31. PubMed ID: 20545456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-level mobility in chronic traumatic brain injury and its relationship with clinical variables and magnetic resonance imaging findings in the acute phase.
    Moen KT; Jørgensen L; Olsen A; Håberg A; Skandsen T; Vik A; Brubakk AM; Evensen KA
    Arch Phys Med Rehabil; 2014 Oct; 95(10):1838-45. PubMed ID: 24814461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interrater and Test-Retest Reliability and Minimal Detectable Change of the Balance Evaluation Systems Test (BESTest) and Subsystems With Community-Dwelling Older Adults.
    Wang-Hsu E; Smith SS
    J Geriatr Phys Ther; 2018; 41(3):173-179. PubMed ID: 28079632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring mobility limitations in children with cerebral palsy: interrater and intrarater reliability of a mobility questionnaire (MobQues).
    Van Ravesteyn NT; Dallmeijer AJ; Scholtes VA; Roorda LD; Becher JG
    Dev Med Child Neurol; 2010 Feb; 52(2):194-9. PubMed ID: 19747207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internal validity of the revised HiMAT for people with neurological conditions.
    Williams G; Hill B; Pallant JF; Greenwood K
    Clin Rehabil; 2012 Aug; 26(8):741-7. PubMed ID: 22172924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the internal construct validity of the revised High-Level Mobility Assessment Tool for traumatic orthopaedic injuries.
    Hill B; Kahn M; Pallant J; Williams G
    Clin Rehabil; 2014 May; 28(5):491-8. PubMed ID: 24113726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliability and construct validity of self-report questionnaires for patients with pelvic girdle pain.
    Grotle M; Garratt AM; Krogstad Jenssen H; Stuge B
    Phys Ther; 2012 Jan; 92(1):111-23. PubMed ID: 22016375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability and validity of the Pediatric Intensity Level of Therapy (PILOT) scale: a measure of the use of intracranial pressure-directed therapies.
    Shore PM; Hand LL; Roy L; Trivedi P; Kochanek PM; Adelson PD
    Crit Care Med; 2006 Jul; 34(7):1981-7. PubMed ID: 16691131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Balance, attention, and dual-task performance during walking after brain injury: associations with falls history.
    McCulloch KL; Buxton E; Hackney J; Lowers S
    J Head Trauma Rehabil; 2010; 25(3):155-63. PubMed ID: 20473089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Functional Movement Screen: a reliability study.
    Teyhen DS; Shaffer SW; Lorenson CL; Halfpap JP; Donofry DF; Walker MJ; Dugan JL; Childs JD
    J Orthop Sports Phys Ther; 2012 Jun; 42(6):530-40. PubMed ID: 22585621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobility after traumatic brain injury: relationships with ankle joint power generation and motor skill level.
    Williams GP; Schache AG; Morris ME
    J Head Trauma Rehabil; 2013; 28(5):371-8. PubMed ID: 22613943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.