BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23504430)

  • 1. Droplets as reaction compartments for protein nanotechnology.
    Devenish SR; Kaltenbach M; Fischlechner M; Hollfelder F
    Methods Mol Biol; 2013; 996():269-86. PubMed ID: 23504430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple method to evaluate the biochemical compatibility of oil/surfactant mixtures for experiments in microdroplets.
    Kaltenbach M; Devenish SR; Hollfelder F
    Lab Chip; 2012 Oct; 12(20):4185-92. PubMed ID: 22885600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitive, high throughput detection of proteins in individual, surfactant-stabilized picoliter droplets using nanoelectrospray ionization mass spectrometry.
    Smith CA; Li X; Mize TH; Sharpe TD; Graziani EI; Abell C; Huck WT
    Anal Chem; 2013 Apr; 85(8):3812-6. PubMed ID: 23514243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase.
    Chae SK; Lee CH; Lee SH; Kim TS; Kang JY
    Lab Chip; 2009 Jul; 9(13):1957-61. PubMed ID: 19532972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic droplets: new integrated workflows for biological experiments.
    Kintses B; van Vliet LD; Devenish SR; Hollfelder F
    Curr Opin Chem Biol; 2010 Oct; 14(5):548-55. PubMed ID: 20869904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of an optimized non-ionic emulsifier blend on properties of oil-in-water emulsions.
    Gullapalli RP; Sheth BB
    Eur J Pharm Biopharm; 1999 Nov; 48(3):233-8. PubMed ID: 10612034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling the retention of small molecules in emulsion microdroplets for use in cell-based assays.
    Courtois F; Olguin LF; Whyte G; Theberge AB; Huck WT; Hollfelder F; Abell C
    Anal Chem; 2009 Apr; 81(8):3008-16. PubMed ID: 19284775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacing microwells with nanoliter compartments: a sampler generating high-resolution concentration gradients for quantitative biochemical analyses in droplets.
    Gielen F; Buryska T; Van Vliet L; Butz M; Damborsky J; Prokop Z; Hollfelder F
    Anal Chem; 2015 Jan; 87(1):624-32. PubMed ID: 25496166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic selective concentration of microdroplet contents by spontaneous emulsification.
    Fukuyama M; Hibara A
    Anal Chem; 2015 Apr; 87(7):3562-5. PubMed ID: 25760305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of process parameters on nanoemulsion droplet size and distribution in SPG membrane emulsification.
    Oh DH; Balakrishnan P; Oh YK; Kim DD; Yong CS; Choi HG
    Int J Pharm; 2011 Feb; 404(1-2):191-7. PubMed ID: 21055456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution.
    Kintses B; Hein C; Mohamed MF; Fischlechner M; Courtois F; Lainé C; Hollfelder F
    Chem Biol; 2012 Aug; 19(8):1001-9. PubMed ID: 22921067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential of microfluidic water-in-oil droplets in experimental biology.
    Schaerli Y; Hollfelder F
    Mol Biosyst; 2009 Dec; 5(12):1392-404. PubMed ID: 20023716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coalescence-assisted generation of single nanoliter droplets with predefined composition.
    Shemesh J; Nir A; Bransky A; Levenberg S
    Lab Chip; 2011 Oct; 11(19):3225-30. PubMed ID: 21826345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.
    Hughes E; Maan AA; Acquistapace S; Burbidge A; Johns ML; Gunes DZ; Clausen P; Syrbe A; Hugo J; Schroen K; Miralles V; Atkins T; Gray R; Homewood P; Zick K
    J Colloid Interface Sci; 2013 Jan; 389(1):147-56. PubMed ID: 22964093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step emulsification of multiple concentric shells with capillary microfluidic devices.
    Kim SH; Weitz DA
    Angew Chem Int Ed Engl; 2011 Sep; 50(37):8731-4. PubMed ID: 21805548
    [No Abstract]   [Full Text] [Related]  

  • 16. Ionic liquid based microemulsion with pharmaceutically accepted components: Formulation and potential applications.
    Moniruzzaman M; Kamiya N; Goto M
    J Colloid Interface Sci; 2010 Dec; 352(1):136-42. PubMed ID: 20825949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple-channel emulsion chips utilizing pneumatic choppers for biotechnology applications.
    Lin YH; Chen CT; Huang LL; Lee GB
    Biomed Microdevices; 2007 Dec; 9(6):833-43. PubMed ID: 17577672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and evaluation of fast-release mephenamic acid microspheres.
    Etman M; Farid R; Nada A; Ebian A
    J Microencapsul; 2010; 27(7):640-56. PubMed ID: 20681746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of dynamic interfacial tension on droplet formation during membrane emulsification.
    van der Graaf S; Schroën CG; van der Sman RG; Boom RM
    J Colloid Interface Sci; 2004 Sep; 277(2):456-63. PubMed ID: 15341859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel asymmetric through-hole array microfabricated on a silicon plate for formulating monodisperse emulsions.
    Kobayashi I; Mukataka S; Nakajima M
    Langmuir; 2005 Aug; 21(17):7629-32. PubMed ID: 16089362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.