These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 23504457)

  • 41. F508del-CFTR increases intracellular Ca(2+) signaling that causes enhanced calcium-dependent Cl(-) conductance in cystic fibrosis.
    Martins JR; Kongsuphol P; Sammels E; Dahimène S; Aldehni F; Clarke LA; Schreiber R; de Smedt H; Amaral MD; Kunzelmann K
    Biochim Biophys Acta; 2011 Nov; 1812(11):1385-92. PubMed ID: 21907281
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Keratin K18 increases cystic fibrosis transmembrane conductance regulator (CFTR) surface expression by binding to its C-terminal hydrophobic patch.
    Duan Y; Sun Y; Zhang F; Zhang WK; Wang D; Wang Y; Cao X; Hu W; Xie C; Cuppoletti J; Magin TM; Wang H; Wu Z; Li N; Huang P
    J Biol Chem; 2012 Nov; 287(48):40547-59. PubMed ID: 23045527
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulation of cystic fibrosis transmembrane conductance regulator single-channel gating by bivalent PDZ-domain-mediated interaction.
    Raghuram V; Mak DO; Foskett JK
    Proc Natl Acad Sci U S A; 2001 Jan; 98(3):1300-5. PubMed ID: 11158634
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation.
    De Stefano D; Villella VR; Esposito S; Tosco A; Sepe A; De Gregorio F; Salvadori L; Grassia R; Leone CA; De Rosa G; Maiuri MC; Pettoello-Mantovani M; Guido S; Bossi A; Zolin A; Venerando A; Pinna LA; Mehta A; Bona G; Kroemer G; Maiuri L; Raia V
    Autophagy; 2014; 10(11):2053-74. PubMed ID: 25350163
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plasma membrane-localized TMEM16 proteins are indispensable for expression of CFTR.
    Benedetto R; Ousingsawat J; Cabrita I; Pinto M; Lérias JR; Wanitchakool P; Schreiber R; Kunzelmann K
    J Mol Med (Berl); 2019 May; 97(5):711-722. PubMed ID: 30915480
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The cystic fibrosis transmembrane conductance regulator (CFTR) and its stability.
    Meng X; Clews J; Kargas V; Wang X; Ford RC
    Cell Mol Life Sci; 2017 Jan; 74(1):23-38. PubMed ID: 27734094
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Augmentation of Cystic Fibrosis Transmembrane Conductance Regulator Function in Human Bronchial Epithelial Cells via SLC6A14-Dependent Amino Acid Uptake. Implications for Treatment of Cystic Fibrosis.
    Ahmadi S; Wu YS; Li M; Ip W; Lloyd-Kuzik A; Di Paola M; Du K; Xia S; Lew A; Bozoky Z; Forman-Kay J; Bear CE; Gonska T
    Am J Respir Cell Mol Biol; 2019 Dec; 61(6):755-764. PubMed ID: 31189070
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fluorescence assay for simultaneous quantification of CFTR ion-channel function and plasma membrane proximity.
    Prins S; Langron E; Hastings C; Hill EJ; Stefan AC; Griffin LD; Vergani P
    J Biol Chem; 2020 Dec; 295(49):16529-16544. PubMed ID: 32934006
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Non-native Conformers of Cystic Fibrosis Transmembrane Conductance Regulator NBD1 Are Recognized by Hsp27 and Conjugated to SUMO-2 for Degradation.
    Gong X; Ahner A; Roldan A; Lukacs GL; Thibodeau PH; Frizzell RA
    J Biol Chem; 2016 Jan; 291(4):2004-2017. PubMed ID: 26627832
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Channel Gating Regulation by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) First Cytosolic Loop.
    Ehrhardt A; Chung WJ; Pyle LC; Wang W; Nowotarski K; Mulvihill CM; Ramjeesingh M; Hong J; Velu SE; Lewis HA; Atwell S; Aller S; Bear CE; Lukacs GL; Kirk KL; Sorscher EJ
    J Biol Chem; 2016 Jan; 291(4):1854-1865. PubMed ID: 26627831
    [TBL] [Abstract][Full Text] [Related]  

  • 51. SYVN1, NEDD8, and FBXO2 Proteins Regulate ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Ubiquitin-mediated Proteasomal Degradation.
    Ramachandran S; Osterhaus SR; Parekh KR; Jacobi AM; Behlke MA; McCray PB
    J Biol Chem; 2016 Dec; 291(49):25489-25504. PubMed ID: 27756846
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A PDZ-interacting domain in CFTR is an apical membrane polarization signal.
    Moyer BD; Denton J; Karlson KH; Reynolds D; Wang S; Mickle JE; Milewski M; Cutting GR; Guggino WB; Li M; Stanton BA
    J Clin Invest; 1999 Nov; 104(10):1353-61. PubMed ID: 10562297
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cystic fibrosis transmembrane conductance regulator degradation: cross-talk between the ubiquitylation and SUMOylation pathways.
    Ahner A; Gong X; Frizzell RA
    FEBS J; 2013 Sep; 280(18):4430-8. PubMed ID: 23809253
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Mechanistic Links between Insulin and Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Cl
    Marunaka Y
    Int J Mol Sci; 2017 Aug; 18(8):. PubMed ID: 28805732
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recent advances and new perspectives in targeting CFTR for therapy of cystic fibrosis and enterotoxin-induced secretory diarrheas.
    Zhang W; Fujii N; Naren AP
    Future Med Chem; 2012 Mar; 4(3):329-45. PubMed ID: 22393940
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Turnover of the cystic fibrosis transmembrane conductance regulator (CFTR): slow degradation of wild-type and delta F508 CFTR in surface membrane preparations of immortalized airway epithelial cells.
    Wei X; Eisman R; Xu J; Harsch AD; Mulberg AE; Bevins CL; Glick MC; Scanlin TF
    J Cell Physiol; 1996 Aug; 168(2):373-84. PubMed ID: 8707873
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Human heat shock protein 105/110 kDa (Hsp105/110) regulates biogenesis and quality control of misfolded cystic fibrosis transmembrane conductance regulator at multiple levels.
    Saxena A; Banasavadi-Siddegowda YK; Fan Y; Bhattacharya S; Roy G; Giovannucci DR; Frizzell RA; Wang X
    J Biol Chem; 2012 Jun; 287(23):19158-70. PubMed ID: 22505710
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calpain digestion and HSP90-based chaperone protection modulate the level of plasma membrane F508del-CFTR.
    Averna M; Stifanese R; Grosso R; Pedrazzi M; De Tullio R; Salamino F; Sparatore B; Pontremoli S; Melloni E
    Biochim Biophys Acta; 2011 Jan; 1813(1):50-9. PubMed ID: 21111762
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ERp29 regulates DeltaF508 and wild-type cystic fibrosis transmembrane conductance regulator (CFTR) trafficking to the plasma membrane in cystic fibrosis (CF) and non-CF epithelial cells.
    Suaud L; Miller K; Alvey L; Yan W; Robay A; Kebler C; Kreindler JL; Guttentag S; Hubbard MJ; Rubenstein RC
    J Biol Chem; 2011 Jun; 286(24):21239-53. PubMed ID: 21525008
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A molecular switch in the scaffold NHERF1 enables misfolded CFTR to evade the peripheral quality control checkpoint.
    Loureiro CA; Matos AM; Dias-Alves Â; Pereira JF; Uliyakina I; Barros P; Amaral MD; Matos P
    Sci Signal; 2015 May; 8(377):ra48. PubMed ID: 25990958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.