These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 23504721)

  • 1. Variable temperature effects of Open Top Chambers at polar and alpine sites explained by irradiance and snow depth.
    Bokhorst S; Huiskes A; Aerts R; Convey P; Cooper EJ; Dalen L; Erschbamer B; Gudmundsson J; Hofgaard A; Hollister RD; Johnstone J; Jónsdóttir IS; Lebouvier M; Van de Vijver B; Wahren CH; Dorrepaal E
    Glob Chang Biol; 2013 Jan; 19(1):64-74. PubMed ID: 23504721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Summer freezing resistance decreased in high-elevation plants exposed to experimental warming in the central Chilean Andes.
    Sierra-Almeida A; Cavieres LA
    Oecologia; 2010 May; 163(1):267-76. PubMed ID: 20237942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled long-term summer warming and deeper snow alters species composition and stimulates gross primary productivity in tussock tundra.
    Leffler AJ; Klein ES; Oberbauer SF; Welker JM
    Oecologia; 2016 May; 181(1):287-97. PubMed ID: 26747269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ozone on managed pasture: I. Effects of open-top chambers on microclimate, ozone flux, and plant growth.
    Fuhrer J
    Environ Pollut; 1994; 86(3):297-305. PubMed ID: 15091621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Warming effects on growth, production, and vegetation structure of alpine shrubs: a five-year experiment in northern Japan.
    Kudo G; Suzuki S
    Oecologia; 2003 Apr; 135(2):280-7. PubMed ID: 12698350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Will changes in root-zone temperature in boreal spring affect recovery of photosynthesis in Picea mariana and Populus tremuloides in a future climate?
    Fréchette E; Ensminger I; Bergeron Y; Gessler A; Berninger F
    Tree Physiol; 2011 Nov; 31(11):1204-16. PubMed ID: 22021010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast Responses of Root Dynamics to Increased Snow Deposition and Summer Air Temperature in an Arctic Wetland.
    D'Imperio L; Arndal MF; Nielsen CS; Elberling B; Schmidt IK
    Front Plant Sci; 2018; 9():1258. PubMed ID: 30214452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential impacts of a warming climate on water availability in snow-dominated regions.
    Barnett TP; Adam JC; Lettenmaier DP
    Nature; 2005 Nov; 438(7066):303-9. PubMed ID: 16292301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates.
    Convey P; Abbandonato H; Bergan F; Beumer LT; Biersma EM; Bråthen VS; D'Imperio L; Jensen CK; Nilsen S; Paquin K; Stenkewitz U; Svoen ME; Winkler J; Müller E; Coulson SJ
    J Therm Biol; 2015 Dec; 54():111-7. PubMed ID: 26615733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. No increase in alpine snowbed productivity in response to experimental lengthening of the growing season.
    Baptist F; Flahaut C; Streb P; Choler P
    Plant Biol (Stuttg); 2010 Sep; 12(5):755-64. PubMed ID: 20701698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental Limits of Tall Shrubs in Alaska's Arctic National Parks.
    Swanson DK
    PLoS One; 2015; 10(9):e0138387. PubMed ID: 26379243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insect overwintering in a changing climate.
    Bale JS; Hayward SA
    J Exp Biol; 2010 Mar; 213(6):980-94. PubMed ID: 20190123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impacts of day versus night warming on soil microclimate: results from a semiarid temperate steppe.
    Xia J; Chen S; Wan S
    Sci Total Environ; 2010 Jun; 408(14):2807-16. PubMed ID: 20409574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Will loss of snow cover during climatic warming expose New Zealand alpine plants to increased frost damage?
    Bannister P; Maegli T; Dickinson KJ; Halloy SR; Knight A; Lord JM; Mark AF; Spencer KL
    Oecologia; 2005 Jun; 144(2):245-56. PubMed ID: 15891822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial activity in alpine soils under climate change.
    D'Alò F; Odriozola I; Baldrian P; Zucconi L; Ripa C; Cannone N; Malfasi F; Brancaleoni L; Onofri S
    Sci Total Environ; 2021 Aug; 783():147012. PubMed ID: 33872894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of climate change and biotic UV exposure through changing snow-ice covers in terrestrial habitats.
    Cockell CS; Córdoba-Jabonero C
    Photochem Photobiol; 2004 Jan; 79(1):26-31. PubMed ID: 14974712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the Effectiveness of
    Frei ER; Schnell L; Vitasse Y; Wohlgemuth T; Moser B
    Front Plant Sci; 2020; 11():539584. PubMed ID: 33329621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transplants, Open Top Chambers (OTCs) and Gradient Studies Ask Different Questions in Climate Change Effects Studies.
    Yang Y; Halbritter AH; Klanderud K; Telford RJ; Wang G; Vandvik V
    Front Plant Sci; 2018; 9():1574. PubMed ID: 30450107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: the results of eight-year field climate manipulations.
    Tsyganov AN; Aerts R; Nijs I; Cornelissen JH; Beyens L
    Protist; 2012 May; 163(3):400-14. PubMed ID: 21839679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of snowmaking on alpine water resources management under present and climate change conditions.
    Vanham D; Fleischhacker E; Rauch W
    Water Sci Technol; 2009; 59(9):1793-801. PubMed ID: 19448315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.