BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23504842)

  • 1. Uncertainty in assessing the impacts of global change with coupled dynamic species distribution and population models.
    Conlisk E; Syphard AD; Franklin J; Flint L; Flint A; Regan H
    Glob Chang Biol; 2013 Mar; 19(3):858-69. PubMed ID: 23504842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the effectiveness of conservation site networks under climate change: accounting for uncertainty.
    Bagchi R; Crosby M; Huntley B; Hole DG; Butchart SH; Collingham Y; Kalra M; Rajkumar J; Rahmani A; Pandey M; Gurung H; Trai le T; Van Quang N; Willis SG
    Glob Chang Biol; 2013 Apr; 19(4):1236-48. PubMed ID: 23504899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of climate change on avian populations.
    Jenouvrier S
    Glob Chang Biol; 2013 Jul; 19(7):2036-57. PubMed ID: 23505016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population dynamics can be more important than physiological limits for determining range shifts under climate change.
    Fordham DA; Mellin C; Russell BD; Akçakaya RH; Bradshaw CJ; Aiello-Lammens ME; Caley JM; Connell SD; Mayfield S; Shepherd SA; Brook BW
    Glob Chang Biol; 2013 Oct; 19(10):3224-37. PubMed ID: 23907833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Choice of baseline climate data impacts projected species' responses to climate change.
    Baker DJ; Hartley AJ; Butchart SH; Willis SG
    Glob Chang Biol; 2016 Jul; 22(7):2392-404. PubMed ID: 26950769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chapter 4. Susceptibility of sharks, rays and chimaeras to global extinction.
    Field IC; Meekan MG; Buckworth RC; Bradshaw CJ
    Adv Mar Biol; 2009; 56():275-363. PubMed ID: 19895977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating climate and ocean change into extinction risk assessments for 82 coral species.
    Brainard RE; Weijerman M; Eakin CM; McElhany P; Miller MW; Patterson M; Piniak GA; Dunlap MJ; Birkeland C
    Conserv Biol; 2013 Dec; 27(6):1169-78. PubMed ID: 24299083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling distribution in European stream macroinvertebrates under future climates.
    Domisch S; Araújo MB; Bonada N; Pauls SU; Jähnig SC; Haase P
    Glob Chang Biol; 2013 Mar; 19(3):752-62. PubMed ID: 23504833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Migrate or evolve: options for plant pathogens under climate change.
    Chakraborty S
    Glob Chang Biol; 2013 Jul; 19(7):1985-2000. PubMed ID: 23554235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Land use in life cycle assessment: global characterization factors based on regional and global potential species extinction.
    de Baan L; Mutel CL; Curran M; Hellweg S; Koellner T
    Environ Sci Technol; 2013 Aug; 47(16):9281-90. PubMed ID: 23875861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confounding factors in the detection of species responses to habitat fragmentation.
    Ewers RM; Didham RK
    Biol Rev Camb Philos Soc; 2006 Feb; 81(1):117-42. PubMed ID: 16318651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Managed relocation as an adaptation strategy for mitigating climate change threats to the persistence of an endangered lizard.
    Fordham DA; Watts MJ; Delean S; Brook BW; Heard LM; Bull CM
    Glob Chang Biol; 2012 Sep; 18(9):2743-55. PubMed ID: 24501053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling species' range shifts in a changing climate: the impacts of biotic interactions, dispersal distance and the rate of climate change.
    Brooker RW; Travis JM; Clark EJ; Dytham C
    J Theor Biol; 2007 Mar; 245(1):59-65. PubMed ID: 17087974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond predictions: biodiversity conservation in a changing climate.
    Dawson TP; Jackson ST; House JI; Prentice IC; Mace GM
    Science; 2011 Apr; 332(6025):53-8. PubMed ID: 21454781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover.
    Jackson ST; Sax DF
    Trends Ecol Evol; 2010 Mar; 25(3):153-60. PubMed ID: 19879014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sensitivity of population viability analysis to uncertainty about habitat requirements: implications for the management of the endangered southern brown bandicoot.
    Southwell DM; Lechner AM; Coates T; Wintle BA
    Conserv Biol; 2008 Aug; 22(4):1045-54. PubMed ID: 18477023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frog population viability under present and future climate conditions: a Bayesian state-space approach.
    McCaffery R; Solonen A; Crone E
    J Anim Ecol; 2012 Sep; 81(5):978-85. PubMed ID: 22574643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions.
    Heino J; Virkkala R; Toivonen H
    Biol Rev Camb Philos Soc; 2009 Feb; 84(1):39-54. PubMed ID: 19032595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Major challenges for correlational ecological niche model projections to future climate conditions.
    Peterson AT; Cobos ME; Jiménez-García D
    Ann N Y Acad Sci; 2018 Oct; 1429(1):66-77. PubMed ID: 29923606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Historical ecology: using unconventional data sources to test for effects of global environmental change.
    Vellend M; Brown CD; Kharouba HM; McCune JL; Myers-Smith IH
    Am J Bot; 2013 Jul; 100(7):1294-305. PubMed ID: 23804553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.