BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23504936)

  • 1. Using MEMo to discover mutual exclusivity modules in cancer.
    Ciriello G; Cerami E; Aksoy BA; Sander C; Schultz N
    Curr Protoc Bioinformatics; 2013 Mar; Chapter 8():8.17.1-8.17.12. PubMed ID: 23504936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutual exclusivity analysis identifies oncogenic network modules.
    Ciriello G; Cerami E; Sander C; Schultz N
    Genome Res; 2012 Feb; 22(2):398-406. PubMed ID: 21908773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BeWith: A Between-Within method to discover relationships between cancer modules via integrated analysis of mutual exclusivity, co-occurrence and functional interactions.
    Dao P; Kim YA; Wojtowicz D; Madan S; Sharan R; Przytycka TM
    PLoS Comput Biol; 2017 Oct; 13(10):e1005695. PubMed ID: 29023534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous Integration of Multi-omics Data Improves the Identification of Cancer Driver Modules.
    Silverbush D; Cristea S; Yanovich-Arad G; Geiger T; Beerenwinkel N; Sharan R
    Cell Syst; 2019 May; 8(5):456-466.e5. PubMed ID: 31103572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An information theoretic method to identify combinations of genomic alterations that promote glioblastoma.
    Melamed RD; Wang J; Iavarone A; Rabadan R
    J Mol Cell Biol; 2015 Jun; 7(3):203-13. PubMed ID: 25941339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient algorithms to discover alterations with complementary functional association in cancer.
    Sarto Basso R; Hochbaum DS; Vandin F
    PLoS Comput Biol; 2019 May; 15(5):e1006802. PubMed ID: 31120875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying Driver Genomic Alterations in Cancers by Searching Minimum-Weight, Mutually Exclusive Sets.
    Lu S; Lu KN; Cheng SY; Hu B; Ma X; Nystrom N; Lu X
    PLoS Comput Biol; 2015 Aug; 11(8):e1004257. PubMed ID: 26317392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling mutual exclusivity of cancer mutations.
    Szczurek E; Beerenwinkel N
    PLoS Comput Biol; 2014 Mar; 10(3):e1003503. PubMed ID: 24675718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic identification of cancer driving signaling pathways based on mutual exclusivity of genomic alterations.
    Babur Ö; Gönen M; Aksoy BA; Schultz N; Ciriello G; Sander C; Demir E
    Genome Biol; 2015 Feb; 16(1):45. PubMed ID: 25887147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying mutual exclusivity across cancer genomes: computational approaches to discover genetic interaction and reveal tumor vulnerability.
    Deng Y; Luo S; Deng C; Luo T; Yin W; Zhang H; Zhang Y; Zhang X; Lan Y; Ping Y; Xiao Y; Li X
    Brief Bioinform; 2019 Jan; 20(1):254-266. PubMed ID: 28968730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Discovery of Mutated Driver Pathways in Cancer: Models and Algorithms.
    Zhang J; Zhang S
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):988-998. PubMed ID: 28113329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of driver modules in pan-cancer via coordinating coverage and exclusivity.
    Gao B; Li G; Liu J; Li Y; Huang X
    Oncotarget; 2017 May; 8(22):36115-36126. PubMed ID: 28415609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating Protein-Protein Interaction Networks and Somatic Mutation Data to Detect Driver Modules in Pan-Cancer.
    Wu H; Chen Z; Wu Y; Zhang H; Liu Q
    Interdiscip Sci; 2022 Mar; 14(1):151-167. PubMed ID: 34491536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OMEN: network-based driver gene identification using mutual exclusivity.
    Van Daele D; Weytjens B; De Raedt L; Marchal K
    Bioinformatics; 2022 Jun; 38(12):3245-3251. PubMed ID: 35552634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SSA-ME Detection of cancer driver genes using mutual exclusivity by small subnetwork analysis.
    Pulido-Tamayo S; Weytjens B; De Maeyer D; Marchal K
    Sci Rep; 2016 Nov; 6():36257. PubMed ID: 27808240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MEXCOwalk: mutual exclusion and coverage based random walk to identify cancer modules.
    Ahmed R; Baali I; Erten C; Hoxha E; Kazan H
    Bioinformatics; 2020 Feb; 36(3):872-879. PubMed ID: 31432076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MEMO: A Method for Computing Metabolic Modules for Cell-Free Production Systems.
    Kamp AV; Klamt S
    ACS Synth Biol; 2020 Mar; 9(3):556-566. PubMed ID: 32069395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovering functional modules by identifying recurrent and mutually exclusive mutational patterns in tumors.
    Miller CA; Settle SH; Sulman EP; Aldape KD; Milosavljevic A
    BMC Med Genomics; 2011 Apr; 4():34. PubMed ID: 21489305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MEMCover: integrated analysis of mutual exclusivity and functional network reveals dysregulated pathways across multiple cancer types.
    Kim YA; Cho DY; Dao P; Przytycka TM
    Bioinformatics; 2015 Jun; 31(12):i284-92. PubMed ID: 26072494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.