These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 23504950)
1. Climate change and broadacre livestock production across southern Australia. 1. Impacts of climate change on pasture and livestock productivity, and on sustainable levels of profitability. Moore AD; Ghahramani A Glob Chang Biol; 2013 May; 19(5):1440-55. PubMed ID: 23504950 [TBL] [Abstract][Full Text] [Related]
2. Sustainable management for rangelands in a variable climate: evidence and insights from northern Australia. O'Reagain PJ; Scanlan JC Animal; 2013 Mar; 7 Suppl 1():68-78. PubMed ID: 23031187 [TBL] [Abstract][Full Text] [Related]
3. Livestock ectoparasites: integrated management in a changing climate. Wall R; Rose H; Ellse L; Morgan E Vet Parasitol; 2011 Aug; 180(1-2):82-9. PubMed ID: 21680100 [TBL] [Abstract][Full Text] [Related]
4. Climate change impacts on crop production in Iran's Zayandeh-Rud River Basin. Gohari A; Eslamian S; Abedi-Koupaei J; Massah Bavani A; Wang D; Madani K Sci Total Environ; 2013 Jan; 442():405-19. PubMed ID: 23178843 [TBL] [Abstract][Full Text] [Related]
5. Forage-based dairying in a water-limited future: use of models to investigate farming system adaptation in southern Australia. Chapman DF; Dassanayake K; Hill JO; Cullen BR; Lane N J Dairy Sci; 2012 Jul; 95(7):4153-75. PubMed ID: 22720972 [TBL] [Abstract][Full Text] [Related]
6. Climate impacts on European agriculture and water management in the context of adaptation and mitigation--the importance of an integrated approach. Falloon P; Betts R Sci Total Environ; 2010 Nov; 408(23):5667-87. PubMed ID: 19501386 [TBL] [Abstract][Full Text] [Related]
7. Impacts of climate change drivers on C4 grassland productivity: scaling driver effects through the plant community. Polley HW; Derner JD; Jackson RB; Wilsey BJ; Fay PA J Exp Bot; 2014 Jul; 65(13):3415-24. PubMed ID: 24501178 [TBL] [Abstract][Full Text] [Related]
8. Integrating crops and livestock in subtropical agricultural systems. Wright IA; Tarawali S; Blümmel M; Gerard B; Teufel N; Herrero M J Sci Food Agric; 2012 Mar; 92(5):1010-5. PubMed ID: 21769884 [TBL] [Abstract][Full Text] [Related]
9. The carbon budget of Pinus radiata plantations in south-western Australia under four climate change scenarios. Simioni G; Ritson P; Kirschbaum MU; McGrath J; Dumbrell I; Copeland B Tree Physiol; 2009 Sep; 29(9):1081-93. PubMed ID: 19617592 [TBL] [Abstract][Full Text] [Related]
10. Late planting has great potential to mitigate the effects of future climate change on Australian rain-fed cotton. Anwar MR; Wang B; Liu L; Waters C Sci Total Environ; 2020 Apr; 714():136806. PubMed ID: 31982770 [TBL] [Abstract][Full Text] [Related]
11. Improving the use of modelling for projections of climate change impacts on crops and pastures. Soussana JF; Graux AI; Tubiello FN J Exp Bot; 2010 May; 61(8):2217-28. PubMed ID: 20410317 [TBL] [Abstract][Full Text] [Related]
12. Long term prospective of the Seine River system: confronting climatic and direct anthropogenic changes. Ducharne A; Baubion C; Beaudoin N; Benoit M; Billen G; Brisson N; Garnier J; Kieken H; Lebonvallet S; Ledoux E; Mary B; Mignolet C; Poux X; Sauboua E; Schott C; Théry S; Viennot P Sci Total Environ; 2007 Apr; 375(1-3):292-311. PubMed ID: 17258297 [TBL] [Abstract][Full Text] [Related]
13. Mixed crop-livestock systems: an economic and environmental-friendly way of farming? Ryschawy J; Choisis N; Choisis JP; Joannon A; Gibon A Animal; 2012 Oct; 6(10):1722-30. PubMed ID: 22717157 [TBL] [Abstract][Full Text] [Related]
14. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Olesen JE; Børgesen CD; Elsgaard L; Palosuo T; Rötter RP; Skjelvåg AO; Peltonen-Sainio P; Börjesson T; Trnka M; Ewert F; Siebert S; Brisson N; Eitzinger J; van Asselt ED; Oberforster M; van der Fels-Klerx HJ Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1527-42. PubMed ID: 22934894 [TBL] [Abstract][Full Text] [Related]
15. Implications of climate change scenarios for agriculture in alpine regions--a case study in the Swiss Rhone catchment. Fuhrer J; Smith P; Gobiet A Sci Total Environ; 2014 Sep; 493():1232-41. PubMed ID: 23830922 [TBL] [Abstract][Full Text] [Related]
16. Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe. Elsgaard L; Børgesen CD; Olesen JE; Siebert S; Ewert F; Peltonen-Sainio P; Rötter RP; Skjelvåg AO Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1514-26. PubMed ID: 22827234 [TBL] [Abstract][Full Text] [Related]
17. Climate change and maize yield in southern Africa: what can farm management do? Rurinda J; van Wijk MT; Mapfumo P; Descheemaeker K; Supit I; Giller KE Glob Chang Biol; 2015 Dec; 21(12):4588-601. PubMed ID: 26251975 [TBL] [Abstract][Full Text] [Related]
18. Climate change: a crop protection challenge for the twenty-first century. Gustafson DI Pest Manag Sci; 2011 Jun; 67(6):691-6. PubMed ID: 21432984 [TBL] [Abstract][Full Text] [Related]
19. Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin. Mishra A; Singh R; Raghuwanshi NS; Chatterjee C; Froebrich J Sci Total Environ; 2013 Dec; 468-469 Suppl():S132-8. PubMed ID: 23800620 [TBL] [Abstract][Full Text] [Related]
20. Carbon-temperature-water change analysis for peanut production under climate change: a prototype for the AgMIP coordinated climate-crop modeling project (C3MP). Ruane AC; McDermid S; Rosenzweig C; Baigorria GA; Jones JW; Romero CC; Dewayne Cecil L Glob Chang Biol; 2014 Feb; 20(2):394-407. PubMed ID: 24115520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]