BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 23505136)

  • 1. Osteogenic properties of starch poly(ε-caprolactone) (SPCL) fiber meshes loaded with osteoblast-like cells in a rat critical-sized cranial defect.
    Link DP; Gardel LS; Correlo VM; Gomes ME; Reis RL
    J Biomed Mater Res A; 2013 Nov; 101(11):3059-65. PubMed ID: 23505136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of enzymes and flow perfusion conditions improves osteogenic differentiation of bone marrow stromal cells cultured upon starch/poly(epsilon-caprolactone) fiber meshes.
    Martins AM; Saraf A; Sousa RA; Alves CM; Mikos AG; Kasper FK; Reis RL
    J Biomed Mater Res A; 2010 Sep; 94(4):1061-9. PubMed ID: 20694973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of lipase and alpha-amylase in the degradation of starch/poly(epsilon-caprolactone) fiber meshes and the osteogenic differentiation of cultured marrow stromal cells.
    Martins AM; Pham QP; Malafaya PB; Sousa RA; Gomes ME; Raphael RM; Kasper FK; Reis RL; Mikos AG
    Tissue Eng Part A; 2009 Feb; 15(2):295-305. PubMed ID: 18721077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue-engineered constructs based on SPCL scaffolds cultured with goat marrow cells: functionality in femoral defects.
    Rodrigues MT; Gomes ME; Viegas CA; Azevedo JT; Dias IR; Guzón FM; Reis RL
    J Tissue Eng Regen Med; 2011 Jan; 5(1):41-9. PubMed ID: 20603869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Starch-poly(epsilon-caprolactone) and starch-poly(lactic acid) fibre-mesh scaffolds for bone tissue engineering applications: structure, mechanical properties and degradation behaviour.
    Gomes ME; Azevedo HS; Moreira AR; Ellä V; Kellomäki M; Reis RL
    J Tissue Eng Regen Med; 2008 Jul; 2(5):243-52. PubMed ID: 18537196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of differentiation stage of amniotic fluid stem cells on bone regeneration.
    Rodrigues MT; Lee BK; Lee SJ; Gomes ME; Reis RL; Atala A; Yoo JJ
    Biomaterials; 2012 Sep; 33(26):6069-78. PubMed ID: 22672834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a starch-based double layer scaffold for bone regeneration in a rat model.
    Requicha JF; Moura T; Leonor IB; Martins T; Muñoz F; Reis RL; Gomes ME; Viegas CA
    J Orthop Res; 2014 Jul; 32(7):904-9. PubMed ID: 24604772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of solid free-form fabrication-based scaffolds seeded with osteoblasts and human umbilical vein endothelial cells for use in vivo osteogenesis.
    Kim JY; Jin GZ; Park IS; Kim JN; Chun SY; Park EK; Kim SY; Yoo J; Kim SH; Rhie JW; Cho DW
    Tissue Eng Part A; 2010 Jul; 16(7):2229-36. PubMed ID: 20163199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Undifferentiated human adipose-derived stromal/stem cells loaded onto wet-spun starch-polycaprolactone scaffolds enhance bone regeneration: nude mice calvarial defect in vivo study.
    Carvalho PP; Leonor IB; Smith BJ; Dias IR; Reis RL; Gimble JM; Gomes ME
    J Biomed Mater Res A; 2014 Sep; 102(9):3102-11. PubMed ID: 24123913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resveratrol-conjugated poly-ε-caprolactone facilitates in vitro mineralization and in vivo bone regeneration.
    Li Y; Dånmark S; Edlund U; Finne-Wistrand A; He X; Norgård M; Blomén E; Hultenby K; Andersson G; Lindgren U
    Acta Biomater; 2011 Feb; 7(2):751-8. PubMed ID: 20849988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repair of rat critical size calvarial defect using osteoblast-like and umbilical vein endothelial cells seeded in gelatin/hydroxyapatite scaffolds.
    Johari B; Ahmadzadehzarajabad M; Azami M; Kazemi M; Soleimani M; Kargozar S; Hajighasemlou S; Farajollahi MM; Samadikuchaksaraei A
    J Biomed Mater Res A; 2016 Jul; 104(7):1770-8. PubMed ID: 26990815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro osteogenic differentiation of human mesenchymal stem cells and in vivo bone formation in composite nanofiber meshes.
    Ko EK; Jeong SI; Rim NG; Lee YM; Shin H; Lee BK
    Tissue Eng Part A; 2008 Dec; 14(12):2105-19. PubMed ID: 18788980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The stimulation of healing within a rat calvarial defect by mPCL-TCP/collagen scaffolds loaded with rhBMP-2.
    Sawyer AA; Song SJ; Susanto E; Chuan P; Lam CX; Woodruff MA; Hutmacher DW; Cool SM
    Biomaterials; 2009 May; 30(13):2479-88. PubMed ID: 19162318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FGF-2 angiogenesis in bone regeneration within critical-sized bone defects in rat calvaria.
    Kigami R; Sato S; Tsuchiya N; Yoshimakai T; Arai Y; Ito K
    Implant Dent; 2013 Aug; 22(4):422-7. PubMed ID: 23835540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of bone regeneration of a tissue-engineered bone complex using human dental pulp stem cells/poly(ε-caprolactone)-biphasic calcium phosphate scaffold constructs in rabbit calvarial defects.
    Wongsupa N; Nuntanaranont T; Kamolmattayakul S; Thuaksuban N
    J Mater Sci Mater Med; 2017 May; 28(5):77. PubMed ID: 28386853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the in vitro culture period on the in vivo performance of cell/titanium bone tissue-engineered constructs using a rat cranial critical size defect model.
    Sikavitsas VI; van den Dolder J; Bancroft GN; Jansen JA; Mikos AG
    J Biomed Mater Res A; 2003 Dec; 67(3):944-51. PubMed ID: 14613243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect.
    Li L; Zhou G; Wang Y; Yang G; Ding S; Zhou S
    Biomaterials; 2015 Jan; 37():218-29. PubMed ID: 25453952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone marrow stromal cells on a three-dimensional bioactive fiber mesh undergo osteogenic differentiation in the absence of osteogenic media supplements: the effect of silanol groups.
    Rodrigues MT; Leonor IB; Gröen N; Viegas CA; Dias IR; Caridade SG; Mano JF; Gomes ME; Reis RL
    Acta Biomater; 2014 Oct; 10(10):4175-85. PubMed ID: 24905935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early effect of platelet-rich plasma on bone healing in combination with an osteoconductive material in rat cranial defects.
    Plachokova AS; van den Dolder J; Stoelinga PJ; Jansen JA
    Clin Oral Implants Res; 2007 Apr; 18(2):244-51. PubMed ID: 17348890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteogenic potential for replacing cells in rat cranial defects implanted with a DNA/protamine complex paste.
    Toda M; Ohno J; Shinozaki Y; Ozaki M; Fukushima T
    Bone; 2014 Oct; 67():237-45. PubMed ID: 25051019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.