BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 23505137)

  • 1. Declining trend of carbon in Finnish cropland soils in 1974-2009.
    Heikkinen J; Ketoja E; Nuutinen V; Regina K
    Glob Chang Biol; 2013 May; 19(5):1456-69. PubMed ID: 23505137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term changes in mollisol organic carbon and nitrogen.
    David MB; McIsaac GF; Darmody RG; Omonode RA
    J Environ Qual; 2009; 38(1):200-11. PubMed ID: 19141810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.
    Wiesmeier M; Hübner R; Spörlein P; Geuß U; Hangen E; Reischl A; Schilling B; von Lützow M; Kögel-Knabner I
    Glob Chang Biol; 2014 Feb; 20(2):653-65. PubMed ID: 24038905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term impacts of land-use change on dynamics of tropical soil carbon and nitrogen pools.
    Yang JC; Huang JH; Pan QM; Tang JW; Han XG
    J Environ Sci (China); 2004; 16(2):256-61. PubMed ID: 15137650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of reforestation, deforestation, and afforestation on carbon storage in soils.
    Czimczik CI; Mund M; Schulze ED; Wirth C
    SEB Exp Biol Ser; 2005; ():319-30. PubMed ID: 17633042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon sequestration in European croplands.
    Smith P; Falloon P
    SEB Exp Biol Ser; 2005; ():47-55. PubMed ID: 17633030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of carbon accumulation in no-till soils with intensive use and cover crops in southern Brazil.
    Amado TJ; Bayer C; Conceição PC; Spagnollo E; de Campos BH; da Veiga M
    J Environ Qual; 2006; 35(4):1599-607. PubMed ID: 16825480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High organic carbon content constricts the potential for stable organic carbon accrual in mineral agricultural soils in Finland.
    Soinne H; Hyyrynen M; Jokubė M; Keskinen R; Hyväluoma J; Pihlainen S; Hyytiäinen K; Miettinen A; Rasa K; Lemola R; Virtanen E; Heinonsalo J; Heikkinen J
    J Environ Manage; 2024 Feb; 352():119945. PubMed ID: 38215596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic carbon stock in topsoil of Jiangsu Province, China, and the recent trend of carbon sequestration.
    Pan GX; Li LQ; Zhang Q; Wang XK; Sun XB; Xu XB; Jiang DA
    J Environ Sci (China); 2005; 17(1):1-7. PubMed ID: 15900748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in cropland topsoil organic carbon with different fertilizations under long-term agro-ecosystem experiments across mainland China.
    Wang C; Pan G; Tian Y; Li L; Zhang X; Han X
    Sci China Life Sci; 2010 Jul; 53(7):858-67. PubMed ID: 20697875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What is soil organic matter worth?
    Sparling GP; Wheeler D; Vesely ET; Schipper LA
    J Environ Qual; 2006; 35(2):548-57. PubMed ID: 16510699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Afforestation effects on SOC in former cropland: oak and spruce chronosequences resampled after 13 years.
    Bárcena TG; Gundersen P; Vesterdal L
    Glob Chang Biol; 2014 Sep; 20(9):2938-52. PubMed ID: 24753073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of variable soil texture, metal saturation of soil organic matter (SOM) and tree species composition on spatial distribution of SOM in forest soils in Poland.
    Gruba P; Socha J; Błońska E; Lasota J
    Sci Total Environ; 2015 Jul; 521-522():90-100. PubMed ID: 25829288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon storage and fluxes in existing and newly created urban soils.
    Beesley L
    J Environ Manage; 2012 Aug; 104():158-65. PubMed ID: 22495017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term effects of fertilization on soil organic carbon changes in continuous corn of northeast China: RothC model simulations.
    Yang XM; Zhang XP; Fang HJ; Zhu P; Ren J; Wang LC
    Environ Manage; 2003 Oct; 32(4):459-65. PubMed ID: 14986895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The carbon count of 2000 years of rice cultivation.
    Kalbitz K; Kaiser K; Fiedler S; Kölbl A; Amelung W; Bräuer T; Cao Z; Don A; Grootes P; Jahn R; Schwark L; Vogelsang V; Wissing L; Kögel-Knabner I
    Glob Chang Biol; 2013 Apr; 19(4):1107-13. PubMed ID: 23504888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased topsoil carbon stock across China's forests.
    Yang Y; Li P; Ding J; Zhao X; Ma W; Ji C; Fang J
    Glob Chang Biol; 2014 Aug; 20(8):2687-96. PubMed ID: 24453073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new baseline of organic carbon stock in European agricultural soils using a modelling approach.
    Lugato E; Panagos P; Bampa F; Jones A; Montanarella L
    Glob Chang Biol; 2014 Jan; 20(1):313-26. PubMed ID: 23765562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of grassland conversion to croplands on soil organic carbon in the temperate Inner Mongolia.
    Wang ZP; Han XG; Li LH
    J Environ Manage; 2008 Feb; 86(3):529-34. PubMed ID: 17254695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Black carbon accrual during 2000 years of paddy-rice and non-paddy cropping in the Yangtze River Delta, China.
    Lehndorff E; Roth PJ; Cao ZH; Amelung W
    Glob Chang Biol; 2014 Jun; 20(6):1968-78. PubMed ID: 24227744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.