These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 23505251)
1. Effects of experimental warming on fungal disease progress in oilseed rape. Siebold M; von Tiedemann A Glob Chang Biol; 2013 Jun; 19(6):1736-47. PubMed ID: 23505251 [TBL] [Abstract][Full Text] [Related]
2. Contrasting Patterns of Colonization with Zheng X; Pfordt A; Khatri L; Eseola AB; Wilch A; Koopmann B; von Tiedemann A Plant Dis; 2019 Aug; 103(8):2090-2099. PubMed ID: 31210597 [TBL] [Abstract][Full Text] [Related]
3. Potential for Seed Transmission of Zheng X; Lopisso DT; Eseola AB; Koopmann B; von Tiedemann A Plant Dis; 2019 Aug; 103(8):1843-1849. PubMed ID: 31124750 [No Abstract] [Full Text] [Related]
4. Developing rainfall- and temperature-based models to describe infection of canola under field conditions caused by pycnidiospores of Leptosphaeria maculans. Ghanbarnia K; Dilantha Fernando WG; Crow G Phytopathology; 2009 Jul; 99(7):879-86. PubMed ID: 19522586 [TBL] [Abstract][Full Text] [Related]
5. Decreased incidence of disease caused by Sclerotinia sclerotiorum and improved plant vigor of oilseed rape with Bacillus subtilis Tu-100. Hu X; Roberts DP; Jiang M; Zhang Y Appl Microbiol Biotechnol; 2005 Oct; 68(6):802-7. PubMed ID: 15744488 [TBL] [Abstract][Full Text] [Related]
6. The Emerging British Verticillium longisporum Population Consists of Aggressive Brassica Pathogens. Depotter JRL; Rodriguez-Moreno L; Thomma BPHJ; Wood TA Phytopathology; 2017 Nov; 107(11):1399-1405. PubMed ID: 28653577 [TBL] [Abstract][Full Text] [Related]
7. Components of a Rice-Oilseed Rape Production System Augmented with Trichoderma sp. Tri-1 Control Sclerotinia sclerotiorum on Oilseed Rape. Hu X; Roberts DP; Xie L; Maul JE; Yu C; Li Y; Zhang Y; Qin L; Liao X Phytopathology; 2015 Oct; 105(10):1325-33. PubMed ID: 26390095 [TBL] [Abstract][Full Text] [Related]
8. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Wang Z; Mao H; Dong C; Ji R; Cai L; Fu H; Liu S Mol Plant Microbe Interact; 2009 Mar; 22(3):235-44. PubMed ID: 19245318 [TBL] [Abstract][Full Text] [Related]
9. Impacts of day versus night warming on soil microclimate: results from a semiarid temperate steppe. Xia J; Chen S; Wan S Sci Total Environ; 2010 Jun; 408(14):2807-16. PubMed ID: 20409574 [TBL] [Abstract][Full Text] [Related]
10. A crop loss-related forecasting model for sclerotinia stem rot in winter oilseed rape. Koch S; Dunker S; Kleinhenz B; Röhrig M; Tiedemann Av Phytopathology; 2007 Sep; 97(9):1186-94. PubMed ID: 18944183 [TBL] [Abstract][Full Text] [Related]
11. Efficient qPCR estimation and discrimination of airborne inoculum of Leptosphaeria maculans and L. biglobosa, the causal organisms of phoma leaf spotting and stem canker of oilseed rape. Kaczmarek J; West JS; King KM; Canning GGM; Latunde-Dada AO; Huang YJ; Fitt BDL; Jedryczka M Pest Manag Sci; 2024 May; 80(5):2453-2460. PubMed ID: 37759372 [TBL] [Abstract][Full Text] [Related]
13. Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Grison R; Grezes-Besset B; Schneider M; Lucante N; Olsen L; Leguay JJ; Toppan A Nat Biotechnol; 1996 May; 14(5):643-6. PubMed ID: 9630959 [TBL] [Abstract][Full Text] [Related]
14. Influence of Elevated Temperatures on Resistance Against Phoma Stem Canker in Oilseed Rape. Noel K; Qi A; Gajula LH; Padley C; Rietz S; Huang YJ; Fitt BDL; Stotz HU Front Plant Sci; 2022; 13():785804. PubMed ID: 35310658 [TBL] [Abstract][Full Text] [Related]
15. Bacterial and fungal endophyte communities in healthy and diseased oilseed rape and their potential for biocontrol of Sclerotinia and Phoma disease. Schmidt CS; Mrnka L; Lovecká P; Frantík T; Fenclová M; Demnerová K; Vosátka M Sci Rep; 2021 Feb; 11(1):3810. PubMed ID: 33589671 [TBL] [Abstract][Full Text] [Related]
16. Identification of quantitative trait loci for resistance against Verticillium longisporum in oilseed rape (Brassica napus). Rygulla W; Snowdon RJ; Friedt W; Happstadius I; Cheung WY; Chen D Phytopathology; 2008 Feb; 98(2):215-21. PubMed ID: 18943198 [TBL] [Abstract][Full Text] [Related]
17. Genomic advances will herald new insights into the Brassica: Leptosphaeria maculans pathosystem. Hayward A; McLanders J; Campbell E; Edwards D; Batley J Plant Biol (Stuttg); 2012 Mar; 14 Suppl 1():1-10. PubMed ID: 21973193 [TBL] [Abstract][Full Text] [Related]
18. Screening of oxylipins for control of oilseed rape (Brassica napus) fungal pathogens. Granér G; Hamberg M; Meijer J Phytochemistry; 2003 May; 63(1):89-95. PubMed ID: 12657302 [TBL] [Abstract][Full Text] [Related]
19. The plant host Brassica napus induces in the pathogen Verticillium longisporum the expression of functional catalase peroxidase which is required for the late phase of disease. Singh S; Braus-Stromeyer SA; Timpner C; Valerius O; von Tiedemann A; Karlovsky P; Druebert C; Polle A; Braus GH Mol Plant Microbe Interact; 2012 Apr; 25(4):569-81. PubMed ID: 22112218 [TBL] [Abstract][Full Text] [Related]