These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 23505352)

  • 1. Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems.
    Chen Y; Wang S; Hilgetag CC; Zhou C
    PLoS Comput Biol; 2013; 9(3):e1002937. PubMed ID: 23505352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Features of spatial and functional segregation and integration of the primate connectome revealed by trade-off between wiring cost and efficiency.
    Chen Y; Wang S; Hilgetag CC; Zhou C
    PLoS Comput Biol; 2017 Sep; 13(9):e1005776. PubMed ID: 28961235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems.
    Kaiser M; Hilgetag CC
    PLoS Comput Biol; 2006 Jul; 2(7):e95. PubMed ID: 16848638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximum Entropy Principle Underlies Wiring Length Distribution in Brain Networks.
    Song Y; Zhou D; Li S
    Cereb Cortex; 2021 Aug; 31(10):4628-4641. PubMed ID: 33999124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient physical embedding of topologically complex information processing networks in brains and computer circuits.
    Bassett DS; Greenfield DL; Meyer-Lindenberg A; Weinberger DR; Moore SW; Bullmore ET
    PLoS Comput Biol; 2010 Apr; 6(4):e1000748. PubMed ID: 20421990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution and development of brain networks: from Caenorhabditis elegans to Homo sapiens.
    Kaiser M; Varier S
    Network; 2011; 22(1-4):143-7. PubMed ID: 22149674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional complexity emerging from anatomical constraints in the brain: the significance of network modularity and rich-clubs.
    Zamora-López G; Chen Y; Deco G; Kringelbach ML; Zhou C
    Sci Rep; 2016 Dec; 6():38424. PubMed ID: 27917958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The trade-off between wiring cost and network topology in white matter structural networks in health and migraine.
    Liu J; Zhao L; Nan J; Li G; Xiong S; von Deneen KM; Gong Q; Liang F; Qin W; Tian J
    Exp Neurol; 2013 Oct; 248():196-204. PubMed ID: 23648629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoscopic organization reveals the constraints governing Caenorhabditis elegans nervous system.
    Pan RK; Chatterjee N; Sinha S
    PLoS One; 2010 Feb; 5(2):e9240. PubMed ID: 20179757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling in topological properties of brain networks.
    Singh SS; Khundrakpam B; Reid AT; Lewis JD; Evans AC; Ishrat R; Sharma BI; Singh RK
    Sci Rep; 2016 Apr; 6():24926. PubMed ID: 27112129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractal rules in brain networks: Signatures of self-organization.
    Singh SS; Haobijam D; Malik MZ; Ishrat R; Singh RKB
    J Theor Biol; 2018 Jan; 437():58-66. PubMed ID: 28935234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The strength of weak connections in the macaque cortico-cortical network.
    Goulas A; Schaefer A; Margulies DS
    Brain Struct Funct; 2015 Sep; 220(5):2939-51. PubMed ID: 25035063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cost-efficiency trade-offs of the human brain network revealed by a multiobjective evolutionary algorithm.
    Ma J; Zhang J; Lin Y; Dai Z
    Neuroimage; 2021 Aug; 236():118040. PubMed ID: 33852939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From Caenorhabditis elegans to the human connectome: a specific modular organization increases metabolic, functional and developmental efficiency.
    Kim JS; Kaiser M
    Philos Trans R Soc Lond B Biol Sci; 2014 Oct; 369(1653):. PubMed ID: 25180307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the connectivity of primate cortical networks from topological and spatial node properties.
    Costa Lda F; Kaiser M; Hilgetag CC
    BMC Syst Biol; 2007 Mar; 1():16. PubMed ID: 17408506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of anatomical and functional connectivity in the brain: a complex networks perspective.
    Stam CJ
    Int J Psychophysiol; 2010 Sep; 77(3):186-94. PubMed ID: 20598763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small-world brain networks.
    Bassett DS; Bullmore E
    Neuroscientist; 2006 Dec; 12(6):512-23. PubMed ID: 17079517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological cluster analysis reveals the systemic organization of the Caenorhabditis elegans connectome.
    Sohn Y; Choi MK; Ahn YY; Lee J; Jeong J
    PLoS Comput Biol; 2011 May; 7(5):e1001139. PubMed ID: 21625578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organization of excitable dynamics in hierarchical biological networks.
    Müller-Linow M; Hilgetag CC; Hütt MT
    PLoS Comput Biol; 2008 Sep; 4(9):e1000190. PubMed ID: 18818769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The rich club of the C. elegans neuronal connectome.
    Towlson EK; Vértes PE; Ahnert SE; Schafer WR; Bullmore ET
    J Neurosci; 2013 Apr; 33(15):6380-7. PubMed ID: 23575836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.