BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23505454)

  • 41. Studies on a pyrimidine phosphoribosyltransferase from murine leukemia P1534J. Partial purification, substrate specificity, and evidence for its existence as a bifunctional complex with orotidine 5-phosphate decarboxylase.
    Reyes P; Guganig ME
    J Biol Chem; 1975 Jul; 250(13):5097-108. PubMed ID: 1171096
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Mitochondrial Orthologue of the dNTP Triphosphohydrolase SAMHD1 Is Essential and Controls Pyrimidine Homeostasis in
    Yagüe-Capilla M; Castillo-Acosta VM; Bosch-Navarrete C; Ruiz-Pérez LM; González-Pacanowska D
    ACS Infect Dis; 2021 Feb; 7(2):318-332. PubMed ID: 33417760
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Response of the pyrimidine pathway of Escherichia coli K 12 to exogenous adenine and uracil.
    Christopherson RI; Finch LR
    Eur J Biochem; 1978 Oct; 90(2):347-58. PubMed ID: 361403
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pyrimidine metabolism in Giardia lamblia trophozoites.
    Lindmark DG; Jarroll EL
    Mol Biochem Parasitol; 1982 May; 5(5):291-6. PubMed ID: 7099205
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of carbon source on pyrimidine synthesis in Pseudomonas mendocina.
    Santiago MF; West TP
    J Basic Microbiol; 2003; 43(6):534-8. PubMed ID: 14625904
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Control of the pyrimidine biosynthetic pathway in Pseudomonas pseudoalcaligenes.
    West TP
    Arch Microbiol; 1994; 162(1-2):75-9. PubMed ID: 7916185
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel location for two enzymes of de novo pyrimidine biosynthesis in trypanosomes and Leishmania.
    Hammond DJ; Gutteridge WE; Opperdoes FR
    FEBS Lett; 1981 Jun; 128(1):27-9. PubMed ID: 7274454
    [No Abstract]   [Full Text] [Related]  

  • 48. Regulation of pyrimidine formation in Pseudomonas oryzihabitans.
    West TP
    J Basic Microbiol; 2007 Oct; 47(5):440-3. PubMed ID: 17910097
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of carbon source on pyrimidine biosynthesis in Pseudomonas alcaligenes ATCC 14909.
    Santiago MF; West TP
    Microbiol Res; 2003; 158(2):195-9. PubMed ID: 12906394
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Physiological characterization of a pyrimidine auxotroph exposes link between uracil phosphoribosyltransferase regulation and riboflavin production in Ashbya gossypii.
    Silva R; Aguiar TQ; Oliveira C; Domingues L
    N Biotechnol; 2019 May; 50():1-8. PubMed ID: 30590201
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Control of pyrimidine nucleotide formation in Pseudomonas aurantiaca.
    Domakonda A; West TP
    Arch Microbiol; 2020 Aug; 202(6):1551-1557. PubMed ID: 32125450
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Revisiting the central metabolism of the bloodstream forms of Trypanosoma brucei: production of acetate in the mitochondrion is essential for parasite viability.
    Mazet M; Morand P; Biran M; Bouyssou G; Courtois P; Daulouède S; Millerioux Y; Franconi JM; Vincendeau P; Moreau P; Bringaud F
    PLoS Negl Trop Dis; 2013; 7(12):e2587. PubMed ID: 24367711
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of plasma concentrations of uridine on pyrimidine biosynthesis in cultured L1210 cells.
    Karle JM; Anderson LW; Cysyk RL
    J Biol Chem; 1984 Jan; 259(1):67-72. PubMed ID: 6323418
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chemotherapeutic strategies against Trypanosoma brucei: drug targets vs. drug targeting.
    Lüscher A; de Koning HP; Mäser P
    Curr Pharm Des; 2007; 13(6):555-67. PubMed ID: 17346174
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of pyrimidine nucleotide formation in Pseudomonas reptilivora.
    West TP
    Lett Appl Microbiol; 2004; 38(2):81-6. PubMed ID: 14746536
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The derepression of enzymes of de novo pyrimidine biosynthesis pathway in Brevibacterium ammoniagenes producing uridine-5-monophosphate and uracil.
    Nudler AA; Garibyan AG; Bourd GI
    FEMS Microbiol Lett; 1991 Aug; 66(3):263-6. PubMed ID: 1769522
    [TBL] [Abstract][Full Text] [Related]  

  • 57. JBP2, a SWI2/SNF2-like protein, regulates de novo telomeric DNA glycosylation in bloodstream form Trypanosoma brucei.
    Kieft R; Brand V; Ekanayake DK; Sweeney K; DiPaolo C; Reznikoff WS; Sabatini R
    Mol Biochem Parasitol; 2007 Nov; 156(1):24-31. PubMed ID: 17706299
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of the first pyrimidine nucleobase transporter in Leishmania: similarities with the Trypanosoma brucei U1 transporter and antileishmanial activity of uracil analogues.
    Papageorgiou IG; Yakob L; Al Salabi MI; Diallinas G; Soteriadou KP; De Koning HP
    Parasitology; 2005 Mar; 130(Pt 3):275-83. PubMed ID: 15796010
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enzymes of pyrimidine biosynthesis in Crithidia luciliae.
    Tampitag S; O'Sullivan WJ
    Mol Biochem Parasitol; 1986 May; 19(2):125-34. PubMed ID: 2873507
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The de novo and salvage pathways of GDP-mannose biosynthesis are both sufficient for the growth of bloodstream-form Trypanosoma brucei.
    Kuettel S; Wadum MC; Güther ML; Mariño K; Riemer C; Ferguson MA
    Mol Microbiol; 2012 Apr; 84(2):340-51. PubMed ID: 22375793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.