These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 23505484)

  • 21. Electrostatic interactions at the interface of two enzymes are essential for two-step alkane biosynthesis in cyanobacteria.
    Chang M; Shimba K; Hayashi Y; Arai M
    Biosci Biotechnol Biochem; 2020 Feb; 84(2):228-237. PubMed ID: 31601165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vibrio harveyi aldehyde dehydrogenase. Partial reversal of aldehyde oxidation and its possible role in the reduction of fatty acids for the bioluminescence reaction.
    Byers D; Meighen E
    J Biol Chem; 1984 Jun; 259(11):7109-14. PubMed ID: 6725283
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Five Fatty Aldehyde Dehydrogenase Enzymes from Marinobacter and Acinetobacter spp. and Structural Insights into the Aldehyde Binding Pocket.
    Bertram JH; Mulliner KM; Shi K; Plunkett MH; Nixon P; Serratore NA; Douglas CJ; Aihara H; Barney BM
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28389542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cloning of a novel gene involved in alkane biosynthesis from Klebsiella sp.
    Ito M; Kambe H; Sawagashira A; Kishino S; Takeuchi M; Ando A; Muramatsu M; Ogawa J
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5917-5923. PubMed ID: 31111182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alkane production from fatty alcohols by the combined reactions catalyzed by an alcohol dehydrogenase and an aldehyde-deformylating oxygenase.
    Sui YA; Maruyama S; Okada N; Ito M; Muramatsu M; Obata S; Ogawa J; Kishino S
    Biosci Biotechnol Biochem; 2023 Jul; 87(8):925-932. PubMed ID: 37156521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities.
    Akhtar MK; Turner NJ; Jones PR
    Proc Natl Acad Sci U S A; 2013 Jan; 110(1):87-92. PubMed ID: 23248280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthetic metabolic pathways for photobiological conversion of CO
    Yunus IS; Wichmann J; Wördenweber R; Lauersen KJ; Kruse O; Jones PR
    Metab Eng; 2018 Sep; 49():201-211. PubMed ID: 30144559
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plant fatty acyl reductases: enzymes generating fatty alcohols for protective layers with potential for industrial applications.
    Rowland O; Domergue F
    Plant Sci; 2012 Sep; 193-194():28-38. PubMed ID: 22794916
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanol metabolism.
    Singer ME; Finnerty WR
    J Bacteriol; 1985 Dec; 164(3):1011-6. PubMed ID: 4066609
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways.
    Coates RC; Podell S; Korobeynikov A; Lapidus A; Pevzner P; Sherman DH; Allen EE; Gerwick L; Gerwick WH
    PLoS One; 2014; 9(1):e85140. PubMed ID: 24475038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria.
    Tan X; Yao L; Gao Q; Wang W; Qi F; Lu X
    Metab Eng; 2011 Mar; 13(2):169-76. PubMed ID: 21220042
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of oleyl oleate wax esters in Arabidopsis thaliana and Camelina sativa seed oil.
    Iven T; Hornung E; Heilmann M; Feussner I
    Plant Biotechnol J; 2016 Jan; 14(1):252-9. PubMed ID: 25912558
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli.
    Liu R; Zhu F; Lu L; Fu A; Lu J; Deng Z; Liu T
    Metab Eng; 2014 Mar; 22():10-21. PubMed ID: 24333607
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of aldehyde-producing activities of cyanobacterial acyl-(acyl carrier protein) reductases.
    Kudo H; Nawa R; Hayashi Y; Arai M
    Biotechnol Biofuels; 2016; 9():234. PubMed ID: 27822307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters.
    Kalscheuer R; Stöveken T; Luftmann H; Malkus U; Reichelt R; Steinbüchel A
    Appl Environ Microbiol; 2006 Feb; 72(2):1373-9. PubMed ID: 16461689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanistic insights from reaction of α-oxiranyl-aldehydes with cyanobacterial aldehyde deformylating oxygenase.
    Das D; Ellington B; Paul B; Marsh EN
    ACS Chem Biol; 2014 Feb; 9(2):570-7. PubMed ID: 24313866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Incorporation, fate, and turnover of free fatty acids in cyanobacteria.
    Kahn A; Oliveira P; Cuau M; Leão PN
    FEMS Microbiol Rev; 2023 Mar; 47(2):. PubMed ID: 37061785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biophysical and structural studies reveal marginal stability of a crucial hydrocarbon biosynthetic enzyme acyl ACP reductase.
    Sharma A; Shakeel T; Gupta M; Rajacharya GH; Yazdani SS
    Sci Rep; 2021 Jun; 11(1):12045. PubMed ID: 34103559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering an Alcohol-Forming Fatty Acyl-CoA Reductase for Aldehyde and Hydrocarbon Biosynthesis in
    Foo JL; Rasouliha BH; Susanto AV; Leong SSJ; Chang MW
    Front Bioeng Biotechnol; 2020; 8():585935. PubMed ID: 33123518
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria.
    Lu X
    Biotechnol Adv; 2010; 28(6):742-6. PubMed ID: 20561924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.