These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 2350560)

  • 1. Separation of non-collagenous proteins of bone formed in titanium implants: experimental study in the rabbit tibia, using a bone harvest chamber.
    Lundgren T; Sennerby L
    Biomaterials; 1990 Apr; 11(3):216-8. PubMed ID: 2350560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recurrent bone regeneration in titanium implants. Experimental model for determining the healing capacity of bone using quantitative microradiography.
    Kälebo P; Jacobsson M
    Biomaterials; 1988 Jul; 9(4):295-301. PubMed ID: 3214653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of indomethacin on the regeneration of cortical bone within titanium implants in rabbits.
    Sennerby L; Kälebo P; Thomsen P; Albrektsson T
    Biomaterials; 1993; 14(2):156-8. PubMed ID: 8435461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osseous penetration rate into implants pretreated with bone cement.
    Albrektsson T
    Arch Orthop Trauma Surg (1978); 1984; 102(3):141-7. PubMed ID: 6703869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The repeated sampling bone chamber: a new permanent titanium implant to study bone grafts in the goat.
    Lamerigts N; Aspenberg P; Buma P; Versleyen D; Slooff TJ
    Lab Anim Sci; 1997 Aug; 47(4):401-6. PubMed ID: 9306314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imperforate titanium shell enclosing recombinant human bone morphogenetic protein-2-induced bone formation for high-profile dental implants in rabbit tibia.
    Casap N; Laviv A; Debecco M; Alterman M; Laster Z; Jensen OT
    J Oral Maxillofac Surg; 2015 Feb; 73(2):245-52. PubMed ID: 25579007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A morphometric and biomechanic comparison of titanium implants inserted in rabbit cortical and cancellous bone.
    Sennerby L; Thomsen P; Ericson LE
    Int J Oral Maxillofac Implants; 1992; 7(1):62-71. PubMed ID: 1398826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone formation rate in osseointegrated titanium implants. Influence of locally applied haemostasis, peripheral blood, autologous bone marrow and fibrin adhesive system (FAS).
    Kälebo P; Buch F; Albrektsson T
    Scand J Plast Reconstr Surg Hand Surg; 1988; 22(1):53-60. PubMed ID: 2455333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implant fixation improved by close fit. Cylindrical implant-bone interface studied in rabbits.
    Carlsson L; Röstlund T; Albrektsson B; Albrektsson T
    Acta Orthop Scand; 1988 Jun; 59(3):272-5. PubMed ID: 3381657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyapatite grafting promotes new bone formation and osseointegration of smooth titanium implants.
    Allegrini S; Rumpel E; Kauschke E; Fanghänel J; König B
    Ann Anat; 2006 Mar; 188(2):143-51. PubMed ID: 16551011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bone chamber for investigation of gas pressure. Oxygen tension measured in rabbits.
    Listrom RD; Symington JM; Albrektsson T
    Acta Orthop Scand; 1988 Aug; 59(4):454-8. PubMed ID: 3421085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of amplitude of micromotion on bone ingrowth into titanium chambers implanted in the rabbit tibia.
    Goodman S; Aspenberg P
    Biomaterials; 1992; 13(13):944-8. PubMed ID: 1477264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug test chamber: a titanium implant for administration of biochemical agents to a standardized bone callus in situ.
    Aspenberg P; Albrektsson T; Lohmander LS; Thorngren KG
    J Biomed Eng; 1988 Jan; 10(1):70-3. PubMed ID: 3347038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cutting directions of bone with biomaterials in situ does influence the outcome of histomorphometrical quantifications.
    Johansson CB; Morberg P
    Biomaterials; 1995 Sep; 16(13):1037-9. PubMed ID: 8580257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The bone growth chamber for quantification of electrically induced osteogenesis.
    Buch F; Albrektsson T; Herbst E
    J Orthop Res; 1986; 4(2):194-203. PubMed ID: 3519909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of soft tissue contamination on the integration of titanium implants. An experimental study in rabbits.
    Ivanoff CJ; Sennerby L; Lekholm U
    Clin Oral Implants Res; 1996 Jun; 7(2):128-32. PubMed ID: 9002831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short- and long-term effects of irradiation on bone regeneration.
    Jacobsson MG; Jönsson AK; Albrektsson TO; Turesson IE
    Plast Reconstr Surg; 1985 Dec; 76(6):841-50. PubMed ID: 4070452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of guided bone regeneration in rabbit tibia using bioresorbable and non-resorbable membranes.
    Piattelli A; Scarano A; Russo P; Matarasso S
    Biomaterials; 1996 Apr; 17(8):791-6. PubMed ID: 8730963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ingrowth of bone into pores in titanium chambers implanted in rabbits: effect of pore cross-sectional shape in the presence of dynamic shear.
    Goodman S; Toksvig-Larsen S; Aspenberg P
    J Biomed Mater Res; 1993 Feb; 27(2):247-53. PubMed ID: 8436582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of initial implant mobility on the integration of titanium implants. An experimental study in rabbits.
    Ivanoff CJ; Sennerby L; Lekholm U
    Clin Oral Implants Res; 1996 Jun; 7(2):120-7. PubMed ID: 9002830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.