BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 23505623)

  • 1. A novel sensing strategy for the detection of Staphylococcus aureus DNA by using a graphene oxide-based fluorescent probe.
    Pang S; Gao Y; Li Y; Liu S; Su X
    Analyst; 2013 May; 138(9):2749-54. PubMed ID: 23505623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel fluorescent DNA sensor for ultrasensitive detection of Helicobacter pylori.
    Liu Z; Su X
    Biosens Bioelectron; 2017 Jan; 87():66-72. PubMed ID: 27522014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel fluorescent biosensor for sequence-specific recognition of double-stranded DNA with the platform of graphene oxide.
    Wu C; Zhou Y; Miao X; Ling L
    Analyst; 2011 May; 136(10):2106-10. PubMed ID: 21442091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ultra-high sensitive platform for fluorescence detection of micrococcal nuclease based on graphene oxide.
    He Y; Xiong LH; Xing XJ; Tang HW; Pang DW
    Biosens Bioelectron; 2013 Apr; 42():467-73. PubMed ID: 23238320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly selective and sensitive method for cysteine detection based on fluorescence resonance energy transfer between FAM-tagged ssDNA and graphene oxide.
    Liu H; Wang Y; Shen A; Zhou X; Hu J
    Talanta; 2012 May; 93():330-5. PubMed ID: 22483919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly sensitive and selective detection of biothiols using graphene oxide-based "molecular beacon"-like fluorescent probe.
    Gao Y; Li Y; Zou X; Huang H; Su X
    Anal Chim Acta; 2012 Jun; 731():68-74. PubMed ID: 22652266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A graphene-based real-time fluorescent assay of deoxyribonuclease I activity and inhibition.
    Zhou Z; Zhu C; Ren J; Dong S
    Anal Chim Acta; 2012 Aug; 740():88-92. PubMed ID: 22840655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Graphene Oxide-Based Sensing Platform for the Determination of Methicillin-Resistant Staphylococcus aureus Based on Strand-Displacement Polymerization Recycling and Synchronous Fluorescent Signal Amplification.
    Ning Y; Gao Q; Zhang X; Wei K; Chen L
    J Biomol Screen; 2016 Sep; 21(8):851-7. PubMed ID: 27286718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene oxide based fluorescence resonance energy transfer and loop-mediated isothermal amplification for white spot syndrome virus detection.
    Waiwijit U; Phokaratkul D; Kampeera J; Lomas T; Wisitsoraat A; Kiatpathomchai W; Tuantranont A
    J Biotechnol; 2015 Oct; 212():44-9. PubMed ID: 26277651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme-free hybridization chain reaction-based signal amplification strategy for the sensitive detection of Staphylococcus aureus.
    Tang J; Wang Z; Zhou J; Lu Q; Deng L
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 May; 215():41-47. PubMed ID: 30818216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fluorescent nanoprobe based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein vascular endothelial growth factor (VEGF).
    Wang SE; Si S
    Appl Spectrosc; 2013 Nov; 67(11):1270-4. PubMed ID: 24160878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction.
    Dong H; Zhang J; Ju H; Lu H; Wang S; Jin S; Hao K; Du H; Zhang X
    Anal Chem; 2012 May; 84(10):4587-93. PubMed ID: 22510208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The photoluminescent graphene oxide serves as an acceptor rather than a donor in the fluorescence resonance energy transfer pair of Cy3.5-graphene oxide.
    Piao Y; Liu F; Seo TS
    Chem Commun (Camb); 2011 Nov; 47(44):12149-51. PubMed ID: 21993302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A facile graphene oxide-based DNA polymerase assay.
    Xu F; Shi H; He X; Wang K; Ye X; Yan L; Wei S
    Analyst; 2012 Sep; 137(17):3989-94. PubMed ID: 22822478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A positively charged QDs-based FRET probe for micrococcal nuclease detection.
    Qiu T; Zhao D; Zhou G; Liang Y; He Z; Liu Z; Peng X; Zhou L
    Analyst; 2010 Sep; 135(9):2394-9. PubMed ID: 20676436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene oxide based fluorescent aptasensor for adenosine deaminase detection using adenosine as the substrate.
    Xing XJ; Liu XG; Yue-He ; Luo QY; Tang HW; Pang DW
    Biosens Bioelectron; 2012; 37(1):61-7. PubMed ID: 22613226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A graphene-based platform for fluorescent detection of SNPs.
    Xu H; Yang Q; Li F; Tang L; Gao S; Jiang B; Zhao X; Wang L; Fan C
    Analyst; 2013 May; 138(9):2678-82. PubMed ID: 23507980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular design for enhanced sensitivity of a FRET aptasensor built on the graphene oxide surface.
    Ueno Y; Furukawa K; Matsuo K; Inoue S; Hayashi K; Hibino H
    Chem Commun (Camb); 2013 Nov; 49(88):10346-8. PubMed ID: 23985796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A versatile graphene-based fluorescence "on/off" switch for multiplex detection of various targets.
    Zhang M; Yin BC; Tan W; Ye BC
    Biosens Bioelectron; 2011 Mar; 26(7):3260-5. PubMed ID: 21255996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplified fluorescent sensing of DNA using graphene oxide and a conjugated cationic polymer.
    Xing XJ; Liu XG; He Y; Lin Y; Zhang CL; Tang HW; Pang DW
    Biomacromolecules; 2013 Jan; 14(1):117-23. PubMed ID: 23215021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.