These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 23505626)
1. Catalytic chromium reduction using formic acid and metal nanoparticles immobilized in a metal-organic framework. Yadav M; Xu Q Chem Commun (Camb); 2013 Apr; 49(32):3327-9. PubMed ID: 23505626 [TBL] [Abstract][Full Text] [Related]
2. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach. Aijaz A; Karkamkar A; Choi YJ; Tsumori N; Rönnebro E; Autrey T; Shioyama H; Xu Q J Am Chem Soc; 2012 Aug; 134(34):13926-9. PubMed ID: 22888976 [TBL] [Abstract][Full Text] [Related]
3. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. Gu X; Lu ZH; Jiang HL; Akita T; Xu Q J Am Chem Soc; 2011 Aug; 133(31):11822-5. PubMed ID: 21761819 [TBL] [Abstract][Full Text] [Related]
4. Palladium nanoparticles encapsulated in a metal-organic framework as efficient heterogeneous catalysts for direct C2 arylation of indoles. Huang Y; Lin Z; Cao R Chemistry; 2011 Nov; 17(45):12706-12. PubMed ID: 21956646 [TBL] [Abstract][Full Text] [Related]
5. Formation and stabilization of colloidal ultra-small palladium nanoparticles on diamine-modified Cr-MIL-101: Synergic boost to hydrogen production from formic acid. Alamgholiloo H; Rostamnia S; Hassankhani A; Liu X; Eftekhari A; Hasanzadeh A; Zhang K; Karimi-Maleh H; Khaksar S; Varma RS; Shokouhimehr M J Colloid Interface Sci; 2020 May; 567():126-135. PubMed ID: 32044541 [TBL] [Abstract][Full Text] [Related]
6. Organophophorous ester degradation by chromium(III) terephthalate metal-organic framework (MIL-101) chelated to N,N-dimethylaminopyridine and related aminopyridines. Wang S; Bromberg L; Schreuder-Gibson H; Hatton TA ACS Appl Mater Interfaces; 2013 Feb; 5(4):1269-78. PubMed ID: 23339453 [TBL] [Abstract][Full Text] [Related]
7. PdRu Bimetallic Nanoparticles/Metal-Organic Framework Composite through Supercritical CO Matsuyama K; Matsuoka T; Eiro M; Kato T; Okuyama T ACS Omega; 2024 May; 9(18):20437-20443. PubMed ID: 38737038 [TBL] [Abstract][Full Text] [Related]
8. Immobilization of palladium silver nanoparticles on NH Han J; Zhang Z; Hao Z; Li G; Liu T J Colloid Interface Sci; 2021 Apr; 587():736-742. PubMed ID: 33223240 [TBL] [Abstract][Full Text] [Related]
9. Catalysis with Metal Nanoparticles Immobilized within the Pores of Metal-Organic Frameworks. Aijaz A; Xu Q J Phys Chem Lett; 2014 Apr; 5(8):1400-11. PubMed ID: 26269986 [TBL] [Abstract][Full Text] [Related]
11. Brønsted-Lewis dual acid sites in a chromium-based metal-organic framework for cooperative catalysis: Highly efficient synthesis of quinazolin-(4H)-1-one derivatives. Oudi S; Oveisi AR; Daliran S; Khajeh M; Teymoori E J Colloid Interface Sci; 2020 Mar; 561():782-792. PubMed ID: 31761467 [TBL] [Abstract][Full Text] [Related]
12. Tuning the surfaces of palladium nanoparticles for the catalytic conversion of Cr(VI) to Cr(III). K'Owino IO; Omole MA; Sadik OA J Environ Monit; 2007 Jul; 9(7):657-65. PubMed ID: 17607385 [TBL] [Abstract][Full Text] [Related]
13. Mitigation of Cr(VI) toxicity using Pd-nanoparticles immobilized catalytic reactor (Pd-NICaR) fabricated via plasma and gamma radiation. Misra N; Kumar V; Rawat S; Goel NK; Shelkar SA; Jagannath ; Singhal RK; Varshney L Environ Sci Pollut Res Int; 2018 Jun; 25(16):16101-16110. PubMed ID: 29594904 [TBL] [Abstract][Full Text] [Related]
15. Highly dispersed palladium nanoparticles anchored on UiO-66(NH₂) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst. Shen L; Wu W; Liang R; Lin R; Wu L Nanoscale; 2013 Oct; 5(19):9374-82. PubMed ID: 23959004 [TBL] [Abstract][Full Text] [Related]
16. Surfactant-free Pd nanoparticles immobilized to a metal-organic framework with size- and location-dependent catalytic selectivity. Aijaz A; Zhu QL; Tsumori N; Akita T; Xu Q Chem Commun (Camb); 2015 Feb; 51(13):2577-80. PubMed ID: 25569372 [TBL] [Abstract][Full Text] [Related]
17. Aldehyde-alcohol reactions catalyzed under mild conditions by chromium(III) terephthalate metal organic framework (MIL-101) and phosphotungstic acid composites. Bromberg L; Hatton TA ACS Appl Mater Interfaces; 2011 Dec; 3(12):4756-64. PubMed ID: 22091761 [TBL] [Abstract][Full Text] [Related]
18. Ultrasmall Pd nanoparticles supported on a metal-organic framework DUT-67-PZDC for enhanced formic acid dehydrogenation. Zhou C; Zhang R; Hu J; Yao C; Liu Z; Duan A; Wang X J Colloid Interface Sci; 2024 Nov; 673():997-1006. PubMed ID: 39002361 [TBL] [Abstract][Full Text] [Related]
19. Metal-organic framework based upon the synergy of a Brønsted acid framework and Lewis acid centers as a highly efficient heterogeneous catalyst for fixed-bed reactions. Li B; Leng K; Zhang Y; Dynes JJ; Wang J; Hu Y; Ma D; Shi Z; Zhu L; Zhang D; Sun Y; Chrzanowski M; Ma S J Am Chem Soc; 2015 Apr; 137(12):4243-8. PubMed ID: 25773275 [TBL] [Abstract][Full Text] [Related]
20. Monodisperse Metal-Organic Framework Nanospheres with Encapsulated Core-Shell Nanoparticles Pt/Au@Pd@{Co Zhao X; Xu H; Wang X; Zheng Z; Xu Z; Ge J ACS Appl Mater Interfaces; 2018 May; 10(17):15096-15103. PubMed ID: 29641173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]