These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 2350568)
1. Protecting against nonrandomly missing data in longitudinal studies. Brown CH Biometrics; 1990 Mar; 46(1):143-55. PubMed ID: 2350568 [TBL] [Abstract][Full Text] [Related]
2. Pseudo-likelihood methods for longitudinal binary data with non-ignorable missing responses and covariates. Parzen M; Lipsitz SR; Fitzmaurice GM; Ibrahim JG; Troxel A Stat Med; 2006 Aug; 25(16):2784-96. PubMed ID: 16345018 [TBL] [Abstract][Full Text] [Related]
3. A copula model for repeated measurements with non-ignorable non-monotone missing outcome. Shen C; Weissfeld L Stat Med; 2006 Jul; 25(14):2427-40. PubMed ID: 16143999 [TBL] [Abstract][Full Text] [Related]
4. Random effects and latent processes approaches for analyzing binary longitudinal data with missingness: a comparison of approaches using opiate clinical trial data. Albert PS; Follmann DA Stat Methods Med Res; 2007 Oct; 16(5):417-39. PubMed ID: 17656452 [TBL] [Abstract][Full Text] [Related]
5. A multistate Markov chain model for longitudinal, categorical quality-of-life data subject to non-ignorable missingness. Cole BF; Bonetti M; Zaslavsky AM; Gelber RD Stat Med; 2005 Aug; 24(15):2317-34. PubMed ID: 15977292 [TBL] [Abstract][Full Text] [Related]
6. Joint modeling of survival and longitudinal data: likelihood approach revisited. Hsieh F; Tseng YK; Wang JL Biometrics; 2006 Dec; 62(4):1037-43. PubMed ID: 17156277 [TBL] [Abstract][Full Text] [Related]
7. Markov transition models for binary repeated measures with ignorable and nonignorable missing values. Xiaowei Yang ; Shoptaw S; Kun Nie ; Juanmei Liu ; Belin TR Stat Methods Med Res; 2007 Aug; 16(4):347-64. PubMed ID: 17715161 [TBL] [Abstract][Full Text] [Related]
8. Expected estimating equations for missing data, measurement error, and misclassification, with application to longitudinal nonignorable missing data. Wang CY; Huang Y; Chao EC; Jeffcoat MK Biometrics; 2008 Mar; 64(1):85-95. PubMed ID: 17608787 [TBL] [Abstract][Full Text] [Related]
9. Simple adjustments for randomized trials with nonrandomly missing or censored outcomes arising from informative covariates. Baker SG; Fitzmaurice GM; Freedman LS; Kramer BS Biostatistics; 2006 Jan; 7(1):29-40. PubMed ID: 15923407 [TBL] [Abstract][Full Text] [Related]
10. A semi-parametric shared parameter model to handle nonmonotone nonignorable missingness. Tsonaka R; Verbeke G; Lesaffre E Biometrics; 2009 Mar; 65(1):81-7. PubMed ID: 18373713 [TBL] [Abstract][Full Text] [Related]
11. Inference methods for saturated models in longitudinal clinical trials with incomplete binary data. Song JX Pharm Stat; 2006; 5(4):295-304. PubMed ID: 17128429 [TBL] [Abstract][Full Text] [Related]
12. Missing not at random models for latent growth curve analyses. Enders CK Psychol Methods; 2011 Mar; 16(1):1-16. PubMed ID: 21381816 [TBL] [Abstract][Full Text] [Related]
13. Assessing missing data assumptions in longitudinal studies: an example using a smoking cessation trial. Yang X; Shoptaw S Drug Alcohol Depend; 2005 Mar; 77(3):213-25. PubMed ID: 15734221 [TBL] [Abstract][Full Text] [Related]
14. Analysis of non-ignorable missing and left-censored longitudinal data using a weighted random effects tobit model. Sattar A; Weissfeld LA; Molenberghs G Stat Med; 2011 Nov; 30(27):3167-80. PubMed ID: 21898524 [TBL] [Abstract][Full Text] [Related]
15. Modeling missingness for time-to-event data: a case study in osteoporosis. Neuenschwander B; Branson M J Biopharm Stat; 2004 Nov; 14(4):1005-19. PubMed ID: 15587977 [TBL] [Abstract][Full Text] [Related]
16. Comparison of data analysis strategies for intent-to-treat analysis in pre-test-post-test designs with substantial dropout rates. Salim A; Mackinnon A; Christensen H; Griffiths K Psychiatry Res; 2008 Sep; 160(3):335-45. PubMed ID: 18718673 [TBL] [Abstract][Full Text] [Related]
17. A sensitivity analysis for nonrandomly missing categorical data arising from a national health disability survey. Baker SG; Ko CW; Graubard BI Biostatistics; 2003 Jan; 4(1):41-56. PubMed ID: 12925329 [TBL] [Abstract][Full Text] [Related]
18. Handling missing responses in generalized linear mixed model without specifying missing mechanism. Zhang H; Paik MC J Biopharm Stat; 2009 Nov; 19(6):1001-17. PubMed ID: 20183461 [TBL] [Abstract][Full Text] [Related]
19. Analysis of change in the presence of informative censoring: application to a longitudinal clinical trial of progressive renal disease. Schluchter MD; Greene T; Beck GJ Stat Med; 2001 Apr; 20(7):989-1007. PubMed ID: 11276031 [TBL] [Abstract][Full Text] [Related]
20. A selection model for longitudinal binary responses subject to non-ignorable attrition. Alfò M; Maruotti A Stat Med; 2009 Aug; 28(19):2435-50. PubMed ID: 19424960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]