These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 23505878)

  • 1. Toxic effects of chlortetracycline on maize growth, reactive oxygen species generation and the antioxidant response.
    Wen B; Liu Y; Wang P; Wu T; Zhang S; Shan X; Lu J
    J Environ Sci (China); 2012; 24(6):1099-105. PubMed ID: 23505878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytotoxicity of brominated diphenyl ether-47 (BDE-47) and its hydroxylated and methoxylated analogues (6-OH-BDE-47 and 6-MeO-BDE-47) to maize (Zea mays L.).
    Xu X; Huang H; Wen B; Wang S; Zhang S
    Chem Res Toxicol; 2015 Mar; 28(3):510-7. PubMed ID: 25654621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atrazine accumulation and toxic responses in maize Zea mays.
    Li X; Wu T; Huang H; Zhang S
    J Environ Sci (China); 2012; 24(2):203-8. PubMed ID: 22655377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxic effects of boron on growth and antioxidant system parameters of maize (Zea mays L.) roots.
    Esim N; Tiryaki D; Karadagoglu O; Atici O
    Toxicol Ind Health; 2013 Oct; 29(9):800-5. PubMed ID: 22491723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cadmium toxicity in Maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation.
    Anjum SA; Tanveer M; Hussain S; Bao M; Wang L; Khan I; Ullah E; Tung SA; Samad RA; Shahzad B
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):17022-30. PubMed ID: 26122572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of exogenous ammonium gluconate on growth, ion flux and antioxidant enzymes of maize (Zea Mays L.) seedlings under NaCl stress.
    Ding F; Wang R; Chen B
    Plant Biol (Stuttg); 2019 Jul; 21(4):643-651. PubMed ID: 30663821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect and fate of water-soluble carbon nanodots in maize (Zea mays L.).
    Chen J; Dou R; Yang Z; Wang X; Mao C; Gao X; Wang L
    Nanotoxicology; 2016 Aug; 10(6):818-28. PubMed ID: 26694806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.
    Wang F; Liu X; Shi Z; Tong R; Adams CA; Shi X
    Chemosphere; 2016 Mar; 147():88-97. PubMed ID: 26761602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological characterization of maize tolerance to low dose of aluminum, highlighted by promoted leaf growth.
    Wang L; Fan XW; Pan JL; Huang ZB; Li YZ
    Planta; 2015 Dec; 242(6):1391-403. PubMed ID: 26253178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings.
    Menezes-Benavente L; Kernodle SP; Margis-Pinheiro M; Scandalios JG
    Redox Rep; 2004; 9(1):29-36. PubMed ID: 15035825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper-induce change in antioxidative system in maize (Zea mays L.).
    Pourakbar L; Khayami M; Khara J; Farbodnia T
    Pak J Biol Sci; 2007 Oct; 10(20):3662-7. PubMed ID: 19093478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought.
    Chugh V; Kaur N; Gupta AK
    Indian J Biochem Biophys; 2011 Feb; 48(1):47-53. PubMed ID: 21469602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quinclorac-induced cell death is accompanied by generation of reactive oxygen species in maize root tissue.
    Sunohara Y; Matsumoto H
    Phytochemistry; 2008 Sep; 69(12):2312-9. PubMed ID: 18674787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of lanthanides on the antioxidative defense system in maize seedlings under cold stress.
    Wang Y; Zhou M; Gong X; Liu C; Hong M; Wang L; Hong F
    Biol Trace Elem Res; 2011 Sep; 142(3):819-30. PubMed ID: 20737244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake and accumulation of copper by roots and shoots of maize (Zea mays L.).
    Liu DH; Jiang WS; Hou WQ
    J Environ Sci (China); 2001 Apr; 13(2):228-32. PubMed ID: 11590748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.).
    Wang Z; Xie X; Zhao J; Liu X; Feng W; White JC; Xing B
    Environ Sci Technol; 2012 Apr; 46(8):4434-41. PubMed ID: 22435775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake and accumulation and oxidative stress in garlic (Allium sativum L.) under lead phytotoxicity.
    Liu D; Zou J; Meng Q; Zou J; Jiang W
    Ecotoxicology; 2009 Jan; 18(1):134-43. PubMed ID: 18773294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of a Plant Biostimulant To Improve Maize (
    Panfili I; Bartucca ML; Marrollo G; Povero G; Del Buono D
    J Agric Food Chem; 2019 Nov; 67(44):12164-12171. PubMed ID: 31600067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating the antioxidant system by exogenous 2-(3,4-dichlorophenoxy) triethylamine in maize seedlings exposed to polyethylene glycol-simulated drought stress.
    Xie T; Gu W; Zhang L; Li L; Qu D; Li C; Meng Y; Li J; Wei S; Li W
    PLoS One; 2018; 13(9):e0203626. PubMed ID: 30183770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of the plant antioxidative response in the differential growth sensitivity to salinity of leaves vs roots during cell development.
    Bernstein N; Shoresh M; Xu Y; Huang B
    Free Radic Biol Med; 2010 Oct; 49(7):1161-71. PubMed ID: 20619339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.