These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23506118)

  • 1. Historical U.S. cropland areas and the potential for bioenergy production on abandoned croplands.
    Zumkehr A; Campbell JE
    Environ Sci Technol; 2013 Apr; 47(8):3840-7. PubMed ID: 23506118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate change mitigation potentials of biofuels produced from perennial crops and natural regrowth on abandoned and degraded cropland in Nordic countries.
    Næss JS; Hu X; Gvein MH; Iordan CM; Cavalett O; Dorber M; Giroux B; Cherubini F
    J Environ Manage; 2023 Jan; 325(Pt A):116474. PubMed ID: 36274301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofuels done right: land efficient animal feeds enable large environmental and energy benefits.
    Dale BE; Bals BD; Kim S; Eranki P
    Environ Sci Technol; 2010 Nov; 44(22):8385-9. PubMed ID: 20958023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioenergy potential of the United States constrained by satellite observations of existing productivity.
    Smith WK; Cleveland CC; Reed SC; Miller NL; Running SW
    Environ Sci Technol; 2012 Mar; 46(6):3536-44. PubMed ID: 22321165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The global potential of bioenergy on abandoned agriculture lands.
    Campbell JE; Lobell DB; Genova RC; Field CB
    Environ Sci Technol; 2008 Aug; 42(15):5791-4. PubMed ID: 18754510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of land-take on the land resource base for crop production in the European Union.
    Tóth G
    Sci Total Environ; 2012 Oct; 435-436():202-14. PubMed ID: 22854091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Land availability for biofuel production.
    Cai X; Zhang X; Wang D
    Environ Sci Technol; 2011 Jan; 45(1):334-9. PubMed ID: 21142000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition.
    Graves RA; Pearson SM; Turner MG
    Ecol Appl; 2016 Mar; 26(2):515-29. PubMed ID: 27209792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. People on the land: changes in global population and croplands during the 20th century.
    Ramankutty N; Foley JA; Olejniczak NJ
    Ambio; 2002 May; 31(3):251-7. PubMed ID: 12164136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing Marginal Land Availability Based on Land Use Change Information in the Contiguous United States.
    Jiang C; Guan K; Khanna M; Chen L; Peng J
    Environ Sci Technol; 2021 Aug; 55(15):10794-10804. PubMed ID: 34297551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cropland carbon fluxes in the United States: increasing geospatial resolution of inventory-based carbon accounting.
    West TO; Brandt CC; Baskaran LM; Hellwinckel CM; Mueller R; Bernacchi CJ; Bandaru V; Yang B; Wilson BS; Marland G; Nelson RG; De la Torre Ugarte DG; Post WM
    Ecol Appl; 2010 Jun; 20(4):1074-86. PubMed ID: 20597291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Food supply and bioenergy production within the global cropland planetary boundary.
    Henry RC; Engström K; Olin S; Alexander P; Arneth A; Rounsevell MDA
    PLoS One; 2018; 13(3):e0194695. PubMed ID: 29566091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soil carbon sequestration or biofuel production: new land-use opportunities for mitigating climate over abandoned Soviet farmlands.
    Vuichard N; Ciais P; Wolf A
    Environ Sci Technol; 2009 Nov; 43(22):8678-83. PubMed ID: 20028070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of global potentially available cropland estimates and their consequences for model-based assessments.
    Eitelberg DA; van Vliet J; Verburg PH
    Glob Chang Biol; 2015 Mar; 21(3):1236-48. PubMed ID: 25205590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of land-cover change on terrestrial carbon dynamics in the southern United States.
    Chen H; Tian H; Liu M; Melillo J; Pan S; Zhang C
    J Environ Qual; 2006; 35(4):1533-47. PubMed ID: 16825474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. U.S. federal agency models offer different visions for achieving Renewable Fuel Standard (RFS2) biofuel volumes.
    Keeler BL; Krohn BJ; Nickerson TA; Hill JD
    Environ Sci Technol; 2013 Sep; 47(18):10095-101. PubMed ID: 24010884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s.
    Gibbs HK; Ruesch AS; Achard F; Clayton MK; Holmgren P; Ramankutty N; Foley JA
    Proc Natl Acad Sci U S A; 2010 Sep; 107(38):16732-7. PubMed ID: 20807750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marginal land-based biomass energy production in China.
    Tang Y; Xie JS; Geng S
    J Integr Plant Biol; 2010 Jan; 52(1):112-21. PubMed ID: 20074145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global biomass production potentials exceed expected future demand without the need for cropland expansion.
    Mauser W; Klepper G; Zabel F; Delzeit R; Hank T; Putzenlechner B; Calzadilla A
    Nat Commun; 2015 Nov; 6():8946. PubMed ID: 26558436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The response of grain production to changes in quantity and quality of cropland in Yangtze River Delta, China.
    Liu G; Zhang L; Zhang Q; Musyimi Z
    J Sci Food Agric; 2015 Feb; 95(3):480-9. PubMed ID: 24838520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.