These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23506118)

  • 21. Future urban land expansion and implications for global croplands.
    Bren d'Amour C; Reitsma F; Baiocchi G; Barthel S; Güneralp B; Erb KH; Haberl H; Creutzig F; Seto KC
    Proc Natl Acad Sci U S A; 2017 Aug; 114(34):8939-8944. PubMed ID: 28028219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon consequences and agricultural implications of growing biofuel crops on marginal agricultural lands in China.
    Qin Z; Zhuang Q; Zhu X; Cai X; Zhang X
    Environ Sci Technol; 2011 Dec; 45(24):10765-72. PubMed ID: 22085109
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unveiling Undercover Cropland Inside Forests Using Landscape Variables: A Supplement to Remote Sensing Image Classification.
    Ayanu Y; Conrad C; Jentsch A; Koellner T
    PLoS One; 2015; 10(6):e0130079. PubMed ID: 26098107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Net energy of cellulosic ethanol from switchgrass.
    Schmer MR; Vogel KP; Mitchell RB; Perrin RK
    Proc Natl Acad Sci U S A; 2008 Jan; 105(2):464-9. PubMed ID: 18180449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Geospatial assessment of bioenergy land use and its impacts on soil erosion in the U.S. Midwest.
    SooHoo WM; Wang C; Li H
    J Environ Manage; 2017 Apr; 190():188-196. PubMed ID: 28049088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The neglected role of abandoned cropland in supporting both food security and climate change mitigation.
    Zheng Q; Ha T; Prishchepov AV; Zeng Y; Yin H; Koh LP
    Nat Commun; 2023 Sep; 14(1):6083. PubMed ID: 37770491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impacts of converting low-intensity pastureland to high-intensity bioenergy cropland on the water quality of tropical streams in Brazil.
    Taniwaki RH; Cassiano CC; Filoso S; Ferraz SFB; Camargo PB; Martinelli LA
    Sci Total Environ; 2017 Apr; 584-585():339-347. PubMed ID: 28040217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of grassland conversion to croplands on soil organic carbon in the temperate Inner Mongolia.
    Wang ZP; Han XG; Li LH
    J Environ Manage; 2008 Feb; 86(3):529-34. PubMed ID: 17254695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A biorefinery for mobility?
    Pacca S; Moreira JR
    Environ Sci Technol; 2011 Nov; 45(22):9498-505. PubMed ID: 21967671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioenergy production from perennial energy crops: a consequential LCA of 12 bioenergy scenarios including land use changes.
    Tonini D; Hamelin L; Wenzel H; Astrup T
    Environ Sci Technol; 2012 Dec; 46(24):13521-30. PubMed ID: 23126612
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatially explicit LCA analysis of biodiversity losses due to different bioenergy policies in the European Union.
    Di Fulvio F; Forsell N; Korosuo A; Obersteiner M; Hellweg S
    Sci Total Environ; 2019 Feb; 651(Pt 1):1505-1516. PubMed ID: 30360280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Environmental impacts of water use in global crop production: hotspots and trade-offs with land use.
    Pfister S; Bayer P; Koehler A; Hellweg S
    Environ Sci Technol; 2011 Jul; 45(13):5761-8. PubMed ID: 21644578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel framework to classify marginal land for sustainable biomass feedstock production.
    Gopalakrishnan G; Cristina Negri M; Snyder SW
    J Environ Qual; 2011; 40(5):1593-600. PubMed ID: 21869522
    [TBL] [Abstract][Full Text] [Related]  

  • 34. China's Land-Use Changes during the Past 300 Years: A Historical Perspective.
    Miao L; Zhu F; Sun Z; Moore JC; Cui X
    Int J Environ Res Public Health; 2016 Aug; 13(9):. PubMed ID: 27571087
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Historical CO(2) emission and concentrations due to land use change of croplands and pastures by country.
    de Campos CP; Muylaert MS; Rosa LP
    Sci Total Environ; 2005 Jun; 346(1-3):149-55. PubMed ID: 15993690
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Topographic dependence of cropland transformation in China during the first decade of the 21st century.
    Li Y; Yang X; Long W
    ScientificWorldJournal; 2013; 2013():303685. PubMed ID: 24235881
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change.
    Searchinger T; Heimlich R; Houghton RA; Dong F; Elobeid A; Fabiosa J; Tokgoz S; Hayes D; Yu TH
    Science; 2008 Feb; 319(5867):1238-40. PubMed ID: 18258860
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields.
    Haberl H; Erb KH; Krausmann F; Bondeau A; Lauk C; Müller C; Plutzar C; Steinberger JK
    Biomass Bioenergy; 2011 Dec; 35(12):4753-4769. PubMed ID: 22211004
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Land Transition and Intensity Analysis of Cropland Expansion in Northern Ghana.
    Shoyama K; Braimoh AK; Avtar R; Saito O
    Environ Manage; 2018 Nov; 62(5):892-905. PubMed ID: 30032319
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Agrofuels capitalism: a view from political economy.
    White B; Dasgupta A
    J Peasant Stud; 2010; 37(4):593-607. PubMed ID: 20873026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.