These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23506262)

  • 1. Fluctuations near the critical micelle concentration. I. Premicellar aggregation, relaxation rate, and isentropic compressibility.
    Bhattacharjee JK; Kaatze U
    J Phys Chem B; 2013 Apr; 117(14):3790-7. PubMed ID: 23506262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of micelle formation and concentration fluctuations in solutions of short-chain surfactants.
    Kaatze U
    J Phys Chem B; 2011 Sep; 115(35):10470-7. PubMed ID: 21766842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluctuations near the critical micelle concentration. II. Ultrasonic attenuation spectra and scaling.
    Bhattacharjee JK; Kaatze U
    J Phys Chem B; 2013 Apr; 117(14):3798-805. PubMed ID: 23506227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass transport in micellar surfactant solutions: 1. Relaxation of micelle concentration, aggregation number and polydispersity.
    Danov KD; Kralchevsky PA; Denkov ND; Ananthapadmanabhan KP; Lips A
    Adv Colloid Interface Sci; 2006 Jan; 119(1):1-16. PubMed ID: 16303116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of conformational characteristics and micellar solution properties of fluorocarbon surfactants.
    Srinivasan V; Blankschtein D
    Langmuir; 2005 Feb; 21(4):1647-60. PubMed ID: 15697320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular-thermodynamic theory of micellization of pH-sensitive surfactants.
    Goldsipe A; Blankschtein D
    Langmuir; 2006 Apr; 22(8):3547-59. PubMed ID: 16584226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 1. Theory.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1634-40. PubMed ID: 18198856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Premicellar aggregation of amphiphilic molecules: Aggregate lifetime and polydispersity.
    Hadgiivanova R; Diamant H
    J Chem Phys; 2009 Mar; 130(11):114901. PubMed ID: 19317560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling counterion binding in ionic-nonionic and ionic-zwitterionic binary surfactant mixtures.
    Goldsipe A; Blankschtein D
    Langmuir; 2005 Oct; 21(22):9850-65. PubMed ID: 16229501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Premicellar aggregation of amphiphilic molecules.
    Hadgiivanova R; Diamant H
    J Phys Chem B; 2007 Aug; 111(30):8854-9. PubMed ID: 17608409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crossover behavior in micellar solutions with lower critical demixing point: broadband ultrasonic spectrometry of the isobutoxyethanol-water system.
    Menzel K; Mirzaev SZ; Kaatze U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011501. PubMed ID: 12935144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boltzmann distributions and slow relaxation in systems with spherical and cylindrical micelles.
    Kuni FM; Shchekin AK; Rusanov AI; Grinin AP
    Langmuir; 2006 Feb; 22(4):1534-43. PubMed ID: 16460071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical fluctuations of the micellar triethylene glycol monoheptyl ether-water system.
    Haller J; Behrends R; Kaatze U
    J Chem Phys; 2006 Mar; 124(12):124910. PubMed ID: 16599728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of Salt Effects on the Micelle-Monomer Exchange Process of Octyl-, Decyl-, and Dodecyltrimethylammonium Bromide in Aqueous Solutions by Means of Ultrasonic Relaxation Spectroscopy.
    Nomura H; Koda S; Matsuoka T; Hiyama T; Shibata R; Kato S
    J Colloid Interface Sci; 2000 Oct; 230(1):22-28. PubMed ID: 10998284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of surfactant micellization: a free energy approach.
    Hadgiivanova R; Diamant H; Andelman D
    J Phys Chem B; 2011 Jun; 115(22):7268-80. PubMed ID: 21158411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micellar aggregation for ionic surfactant in pure solvent and electrolyte solution: nonextensive thermodynamics approach.
    Letellier P; Mayaffre A; Turmine M
    J Colloid Interface Sci; 2008 May; 321(1):195-204. PubMed ID: 18275968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions in binary mixed systems involving a sugar-based surfactant and different n-alkyltrimethylammonium bromides.
    Hierrezuelo JM; Aguiar J; Carnero Ruiz C
    J Colloid Interface Sci; 2006 Feb; 294(2):449-57. PubMed ID: 16125718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complementary use of simulations and molecular-thermodynamic theory to model micellization.
    Stephenson BC; Beers K; Blankschtein D
    Langmuir; 2006 Feb; 22(4):1500-13. PubMed ID: 16460068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.