BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23506309)

  • 1. DNA translocation by human uracil DNA glycosylase: role of DNA phosphate charge.
    Schonhoft JD; Kosowicz JG; Stivers JT
    Biochemistry; 2013 Apr; 52(15):2526-35. PubMed ID: 23506309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA translocation by human uracil DNA glycosylase: the case of single-stranded DNA and clustered uracils.
    Schonhoft JD; Stivers JT
    Biochemistry; 2013 Apr; 52(15):2536-44. PubMed ID: 23506270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uracil DNA glycosylase: revisiting substrate-assisted catalysis by DNA phosphate anions.
    Parker JB; Stivers JT
    Biochemistry; 2008 Aug; 47(33):8614-22. PubMed ID: 18652484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cosolute paramagnetic relaxation enhancements detect transient conformations of human uracil DNA glycosylase (hUNG).
    Sun Y; Friedman JI; Stivers JT
    Biochemistry; 2011 Dec; 50(49):10724-31. PubMed ID: 22077282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic properties of complexes along a DNA glycosylase damage search pathway.
    Cravens SL; Hobson M; Stivers JT
    Biochemistry; 2014 Dec; 53(48):7680-92. PubMed ID: 25408964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uracil DNA glycosylase uses DNA hopping and short-range sliding to trap extrahelical uracils.
    Porecha RH; Stivers JT
    Proc Natl Acad Sci U S A; 2008 Aug; 105(31):10791-6. PubMed ID: 18669665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uracil-DNA glycosylase: Structural, thermodynamic and kinetic aspects of lesion search and recognition.
    Zharkov DO; Mechetin GV; Nevinsky GA
    Mutat Res; 2010 Mar; 685(1-2):11-20. PubMed ID: 19909758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human ribosomal protein S3 (hRpS3) interacts with uracil-DNA glycosylase (hUNG) and stimulates its glycosylase activity.
    Ko SI; Park JH; Park MJ; Kim J; Kang LW; Han YS
    Mutat Res; 2008 Dec; 648(1-2):54-64. PubMed ID: 18973764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational rationale for the selective inhibition of the herpes simplex virus type 1 uracil-DNA glycosylase enzyme.
    Hendricks U; Crous W; Naidoo KJ
    J Chem Inf Model; 2014 Dec; 54(12):3362-72. PubMed ID: 25369428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA Glycosylase.
    Schormann N; Banerjee S; Ricciardi R; Chattopadhyay D
    BMC Struct Biol; 2015 Jun; 15():10. PubMed ID: 26031450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure determination of uracil-DNA N-glycosylase from Deinococcus radiodurans in complex with DNA.
    Pedersen HL; Johnson KA; McVey CE; Leiros I; Moe E
    Acta Crystallogr D Biol Crystallogr; 2015 Oct; 71(Pt 10):2137-49. PubMed ID: 26457437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of Facilitated Diffusion of DNA Repair Proteins in Crowded Environment: Case Study with Human Uracil DNA Glycosylase.
    Dey P; Bhattacherjee A
    J Phys Chem B; 2019 Dec; 123(49):10354-10364. PubMed ID: 31725289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rapid reaction analysis of uracil DNA glycosylase indicates an active mechanism of base flipping.
    Bellamy SR; Krusong K; Baldwin GS
    Nucleic Acids Res; 2007; 35(5):1478-87. PubMed ID: 17284454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structural determinant in the uracil DNA glycosylase superfamily for the removal of uracil from adenine/uracil base pairs.
    Lee DH; Liu Y; Lee HW; Xia B; Brice AR; Park SH; Balduf H; Dominy BN; Cao W
    Nucleic Acids Res; 2015 Jan; 43(2):1081-9. PubMed ID: 25550433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of an unnatural difluorophenyl nucleotide by uracil DNA glycosylase.
    Jiang YL; McDowell LM; Poliks B; Studelska DR; Cao C; Potter GS; Schaefer J; Song F; Stivers JT
    Biochemistry; 2004 Dec; 43(49):15429-38. PubMed ID: 15581354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of damaged DNA bases by DNA glycosylase enzymes.
    Friedman JI; Stivers JT
    Biochemistry; 2010 Jun; 49(24):4957-67. PubMed ID: 20469926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlated cleavage of single- and double-stranded substrates by uracil-DNA glycosylase.
    Sidorenko VS; Mechetin GV; Nevinsky GA; Zharkov DO
    FEBS Lett; 2008 Feb; 582(3):410-4. PubMed ID: 18201572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nontarget DNA binding shapes the dynamic landscape for enzymatic recognition of DNA damage.
    Friedman JI; Majumdar A; Stivers JT
    Nucleic Acids Res; 2009 Jun; 37(11):3493-500. PubMed ID: 19339520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Powering DNA repair through substrate electrostatic interactions.
    Jiang YL; Ichikawa Y; Song F; Stivers JT
    Biochemistry; 2003 Feb; 42(7):1922-9. PubMed ID: 12590578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural role of uracil DNA glycosylase for the recognition of uracil in DNA duplexes. Clues from atomistic simulations.
    Franco D; Sgrignani J; Bussi G; Magistrato A
    J Chem Inf Model; 2013 Jun; 53(6):1371-87. PubMed ID: 23705837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.