BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23506527)

  • 1. Effect of enzyme concentration of the morphology and properties of enzymatically triggered peptide hydrogels.
    Guilbaud JB; Rochas C; Miller AF; Saiani A
    Biomacromolecules; 2013 May; 14(5):1403-11. PubMed ID: 23506527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatically triggered peptide hydrogels for 3D cell encapsulation and culture.
    Szkolar L; Guilbaud JB; Miller AF; Gough JE; Saiani A
    J Pept Sci; 2014 Jul; 20(7):578-84. PubMed ID: 24920105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis.
    Toledano S; Williams RJ; Jayawarna V; Ulijn RV
    J Am Chem Soc; 2006 Feb; 128(4):1070-1. PubMed ID: 16433511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of peptide and guest charge on the structural, mechanical and release properties of β-sheet forming peptides.
    Roberts D; Rochas C; Saiani A; Miller AF
    Langmuir; 2012 Nov; 28(46):16196-206. PubMed ID: 23088490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic catalyzed synthesis and triggered gelation of ionic peptides.
    Guilbaud JB; Vey E; Boothroyd S; Smith AM; Ulijn RV; Saiani A; Miller AF
    Langmuir; 2010 Jul; 26(13):11297-303. PubMed ID: 20408518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembling peptide/thermoresponsive polymer composite hydrogels: effect of peptide-polymer interactions on hydrogel properties.
    Maslovskis A; Guilbaud JB; Grillo I; Hodson N; Miller AF; Saiani A
    Langmuir; 2014 Sep; 30(34):10471-80. PubMed ID: 25095719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide.
    Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T
    Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatically cross-linked tilapia gelatin hydrogels: physical, chemical, and hybrid networks.
    Bode F; da Silva MA; Drake AF; Ross-Murphy SB; Dreiss CA
    Biomacromolecules; 2011 Oct; 12(10):3741-52. PubMed ID: 21819136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introducing chemical functionality in Fmoc-peptide gels for cell culture.
    Jayawarna V; Richardson SM; Hirst AR; Hodson NW; Saiani A; Gough JE; Ulijn RV
    Acta Biomater; 2009 Mar; 5(3):934-43. PubMed ID: 19249724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphology and gelation of thermosensitive xyloglucan hydrogels.
    Nisbet DR; Crompton KE; Hamilton SD; Shirakawa S; Prankerd RJ; Finkelstein DI; Horne MK; Forsythe JS
    Biophys Chem; 2006 Apr; 121(1):14-20. PubMed ID: 16406645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soft hydrogels from nanotubes of poly(ethylene oxide)-tetraphenylalanine conjugates prepared by click chemistry.
    Tzokova N; Fernyhough CM; Topham PD; Sandon N; Adams DJ; Butler MF; Armes SP; Ryan AJ
    Langmuir; 2009 Feb; 25(4):2479-85. PubMed ID: 19161273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From fibres to networks using self-assembling peptides.
    Boothroyd S; Millerb AF; Saiani A
    Faraday Discuss; 2013; 166():195-207. PubMed ID: 24611277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of designed BMHP1-derived self-assembling peptides for tissue engineering applications.
    Silva D; Natalello A; Sanii B; Vasita R; Saracino G; Zuckermann RN; Doglia SM; Gelain F
    Nanoscale; 2013 Jan; 5(2):704-18. PubMed ID: 23223865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling network topology and mechanical properties of co-assembling peptide hydrogels.
    Boothroyd S; Saiani A; Miller AF
    Biopolymers; 2014 Jun; 101(6):669-80. PubMed ID: 26819975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smart hydrogels from laterally-grafted peptide assembly.
    Li W; Park IS; Kang SK; Lee M
    Chem Commun (Camb); 2012 Sep; 48(70):8796-8. PubMed ID: 22836696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives.
    Ryan DM; Doran TM; Anderson SB; Nilsson BL
    Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of hybrid hydrogels consisting of tripeptide and different silver nanoparticle-capped ligands: modulation of the mechanical strength of gel phase materials.
    Nanda J; Adhikari B; Basak S; Banerjee A
    J Phys Chem B; 2012 Oct; 116(40):12235-44. PubMed ID: 22962848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled release from modified amino acid hydrogels governed by molecular size or network dynamics.
    Sutton S; Campbell NL; Cooper AI; Kirkland M; Frith WJ; Adams DJ
    Langmuir; 2009 Sep; 25(17):10285-91. PubMed ID: 19499945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rheometric study of the gelation of chitosan in a hydroalcoholic medium.
    Montembault A; Viton C; Domard A
    Biomaterials; 2005 May; 26(14):1633-43. PubMed ID: 15576137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable poly(ethylene glycol)-peptide hydrogels with well-defined structure and properties for cell delivery.
    Liu SQ; Ee PL; Ke CY; Hedrick JL; Yang YY
    Biomaterials; 2009 Mar; 30(8):1453-61. PubMed ID: 19097642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.