BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23506527)

  • 21. Controlling stiffness in nanostructured hydrogels produced by enzymatic dephosphorylation.
    Thornton K; Smith AM; Merry CL; Ulijn RV
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):660-4. PubMed ID: 19614571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rheology of peptide- and protein-based physical hydrogels: are everyday measurements just scratching the surface?
    Sathaye S; Mbi A; Sonmez C; Chen Y; Blair DL; Schneider JP; Pochan DJ
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(1):34-68. PubMed ID: 25266637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide.
    Schneider JP; Pochan DJ; Ozbas B; Rajagopal K; Pakstis L; Kretsinger J
    J Am Chem Soc; 2002 Dec; 124(50):15030-7. PubMed ID: 12475347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlling Self-Assembling Peptide Hydrogel Properties through Network Topology.
    Gao J; Tang C; Elsawy MA; Smith AM; Miller AF; Saiani A
    Biomacromolecules; 2017 Mar; 18(3):826-834. PubMed ID: 28068466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning the pH responsiveness of beta-hairpin peptide folding, self-assembly, and hydrogel material formation.
    Rajagopal K; Lamm MS; Haines-Butterick LA; Pochan DJ; Schneider JP
    Biomacromolecules; 2009 Sep; 10(9):2619-25. PubMed ID: 19663418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Secondary photocrosslinking of injectable shear-thinning dock-and-lock hydrogels.
    Lu HD; Soranno DE; Rodell CB; Kim IL; Burdick JA
    Adv Healthc Mater; 2013 Jul; 2(7):1028-36. PubMed ID: 23299998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning β-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity.
    Bowerman CJ; Liyanage W; Federation AJ; Nilsson BL
    Biomacromolecules; 2011 Jul; 12(7):2735-45. PubMed ID: 21568346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient formation of multicompartment hydrogels by stepwise self-assembly of thermoresponsive ABC triblock terpolymers.
    Zhou C; Hillmyer MA; Lodge TP
    J Am Chem Soc; 2012 Jun; 134(25):10365-8. PubMed ID: 22694801
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Supramolecular hydrogels with reverse thermal gelation properties from (oligo)tyrosine containing block copolymers.
    Huang J; Hastings CL; Duffy GP; Kelly HM; Raeburn J; Adams DJ; Heise A
    Biomacromolecules; 2013 Jan; 14(1):200-6. PubMed ID: 23190093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tailoring the network properties of Ca2+ crosslinked Aloe vera polysaccharide hydrogels for in situ release of therapeutic agents.
    McConaughy SD; Kirkland SE; Treat NJ; Stroud PA; McCormick CL
    Biomacromolecules; 2008 Nov; 9(11):3277-87. PubMed ID: 18937400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tunable mechanics of peptide nanofiber gels.
    Greenfield MA; Hoffman JR; de la Cruz MO; Stupp SI
    Langmuir; 2010 Mar; 26(5):3641-7. PubMed ID: 19817454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Origins of the different metal preferences of Escherichia coli peptide deformylase and Bacillus thermoproteolyticus thermolysin: a comparative quantum mechanical/molecular mechanical study.
    Dong M; Liu H
    J Phys Chem B; 2008 Aug; 112(33):10280-90. PubMed ID: 18651766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glutathione-triggered formation of molecular hydrogels for 3D cell culture.
    Lv L; Liu H; Chen X; Yang Z
    Colloids Surf B Biointerfaces; 2013 Aug; 108():352-7. PubMed ID: 23587765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of silk fibroin interpenetrating networks on swelling/deswelling kinetics and rheological properties of poly(N-isopropylacrylamide) hydrogels.
    Gil ES; Hudson SM
    Biomacromolecules; 2007 Jan; 8(1):258-64. PubMed ID: 17206815
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tetrapeptide-based hydrogels: for encapsulation and slow release of an anticancer drug at physiological pH.
    Naskar J; Palui G; Banerjee A
    J Phys Chem B; 2009 Sep; 113(35):11787-92. PubMed ID: 19708711
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis for the action of thermolysin.
    Tronrud DE; Roderick SL; Matthews BW
    Matrix Suppl; 1992; 1():107-11. PubMed ID: 1480010
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzyme-mediated cross-linking of Pluronic copolymer micelles for injectable and in situ forming hydrogels.
    Lee SH; Lee Y; Lee SW; Ji HY; Lee JH; Lee DS; Park TG
    Acta Biomater; 2011 Apr; 7(4):1468-76. PubMed ID: 21111850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and rheology of dual-associative protein hydrogels under nonlinear shear flow.
    Sing MK; Glassman MJ; Vronay-Ruggles XT; Burghardt WR; Olsen BD
    Soft Matter; 2017 Nov; 13(45):8511-8524. PubMed ID: 29091099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of surfaces and interfaces of poly(N,N-dimethylacrylamide) hydrogels.
    Sudre G; Hourdet D; Cousin F; Creton C; Tran Y
    Langmuir; 2012 Aug; 28(33):12282-7. PubMed ID: 22823739
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure and rheology of cationic molecular hydrogels of quinuclidine grafted bile salts. Influence of the ionic strength and counter-ion type.
    Terech P; Dourdain S; Maitra U; Bhat S
    J Phys Chem B; 2009 Apr; 113(14):4619-30. PubMed ID: 19256482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.