These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 23506683)
1. Membrane defects enhance the interaction of antimicrobial peptides, aurein 1.2 versus caerin 1.1. Fernandez DI; Sani MA; Miles AJ; Wallace BA; Separovic F Biochim Biophys Acta; 2013 Aug; 1828(8):1863-72. PubMed ID: 23506683 [TBL] [Abstract][Full Text] [Related]
2. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Cheng JT; Hale JD; Elliot M; Hancock RE; Straus SK Biophys J; 2009 Jan; 96(2):552-65. PubMed ID: 19167304 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the structure and membrane interaction of the antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Pan YL; Cheng JT; Hale J; Pan J; Hancock RE; Straus SK Biophys J; 2007 Apr; 92(8):2854-64. PubMed ID: 17259271 [TBL] [Abstract][Full Text] [Related]
4. Interactions of a synthetic Leu-Lys-rich antimicrobial peptide with phospholipid bilayers. Fernandez DI; Sani MA; Gehman JD; Hahm KS; Separovic F Eur Biophys J; 2011 Apr; 40(4):471-80. PubMed ID: 21225256 [TBL] [Abstract][Full Text] [Related]
5. Proline facilitates membrane insertion of the antimicrobial peptide maculatin 1.1 via surface indentation and subsequent lipid disordering. Fernandez DI; Lee TH; Sani MA; Aguilar MI; Separovic F Biophys J; 2013 Apr; 104(7):1495-507. PubMed ID: 23561526 [TBL] [Abstract][Full Text] [Related]
6. Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis. Lee TH; Heng C; Swann MJ; Gehman JD; Separovic F; Aguilar MI Biochim Biophys Acta; 2010 Oct; 1798(10):1977-86. PubMed ID: 20599687 [TBL] [Abstract][Full Text] [Related]
7. Interaction of the Antimicrobial Peptide Aurein 1.2 and Charged Lipid Bilayer. Rai DK; Qian S Sci Rep; 2017 Jun; 7(1):3719. PubMed ID: 28623332 [TBL] [Abstract][Full Text] [Related]
8. Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with lipid model membranes: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Seto GW; Marwaha S; Kobewka DM; Lewis RN; Separovic F; McElhaney RN Biochim Biophys Acta; 2007 Nov; 1768(11):2787-800. PubMed ID: 17825246 [TBL] [Abstract][Full Text] [Related]
9. Comparison of reversible membrane destabilisation induced by antimicrobial peptides derived from Australian frogs. Lee TH; Heng C; Separovic F; Aguilar MI Biochim Biophys Acta; 2014 Sep; 1838(9):2205-15. PubMed ID: 24593995 [TBL] [Abstract][Full Text] [Related]
10. The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism. Fernandez DI; Le Brun AP; Whitwell TC; Sani MA; James M; Separovic F Phys Chem Chem Phys; 2012 Dec; 14(45):15739-51. PubMed ID: 23093307 [TBL] [Abstract][Full Text] [Related]
11. The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants. Cheng JT; Hale JD; Elliott M; Hancock RE; Straus SK Biochim Biophys Acta; 2011 Mar; 1808(3):622-33. PubMed ID: 21144817 [TBL] [Abstract][Full Text] [Related]
12. Solution structure and membrane interactions of the antimicrobial peptide fallaxidin 4.1a: an NMR and QCM study. Sherman PJ; Jackway RJ; Gehman JD; Praporski S; McCubbin GA; Mechler A; Martin LL; Separovic F; Bowie JH Biochemistry; 2009 Dec; 48(50):11892-901. PubMed ID: 19894755 [TBL] [Abstract][Full Text] [Related]
13. Membrane interaction and perturbation mechanisms induced by two cationic cell penetrating peptides with distinct charge distribution. Alves ID; Goasdoué N; Correia I; Aubry S; Galanth C; Sagan S; Lavielle S; Chassaing G Biochim Biophys Acta; 2008; 1780(7-8):948-59. PubMed ID: 18498774 [TBL] [Abstract][Full Text] [Related]
14. Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes. Gehman JD; Luc F; Hall K; Lee TH; Boland MP; Pukala TL; Bowie JH; Aguilar MI; Separovic F Biochemistry; 2008 Aug; 47(33):8557-65. PubMed ID: 18652483 [TBL] [Abstract][Full Text] [Related]
15. Interaction of antimicrobial peptides from Australian amphibians with lipid membranes. Marcotte I; Wegener KL; Lam YH; Chia BC; de Planque MR; Bowie JH; Auger M; Separovic F Chem Phys Lipids; 2003 Jan; 122(1-2):107-20. PubMed ID: 12598042 [TBL] [Abstract][Full Text] [Related]
16. Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and lipopolysaccharide selective binding. Ramamoorthy A; Thennarasu S; Tan A; Gottipati K; Sreekumar S; Heyl DL; An FY; Shelburne CE Biochemistry; 2006 May; 45(20):6529-40. PubMed ID: 16700563 [TBL] [Abstract][Full Text] [Related]
17. Antimicrobial and membrane disrupting activities of a peptide derived from the human cathelicidin antimicrobial peptide LL37. Thennarasu S; Tan A; Penumatchu R; Shelburne CE; Heyl DL; Ramamoorthy A Biophys J; 2010 Jan; 98(2):248-57. PubMed ID: 20338846 [TBL] [Abstract][Full Text] [Related]
18. The membrane insertion of helical antimicrobial peptides from the N-terminus of Helicobacter pylori ribosomal protein L1. Lee TH; Hall KN; Swann MJ; Popplewell JF; Unabia S; Park Y; Hahm KS; Aguilar MI Biochim Biophys Acta; 2010 Mar; 1798(3):544-57. PubMed ID: 20100457 [TBL] [Abstract][Full Text] [Related]
19. Determining the mode of action involved in the antimicrobial activity of synthetic peptides: a solid-state NMR and FTIR study. Lorin A; Noël M; Provencher MÈ; Turcotte V; Cardinal S; Lagüe P; Voyer N; Auger M Biophys J; 2012 Oct; 103(7):1470-9. PubMed ID: 23062339 [TBL] [Abstract][Full Text] [Related]
20. Interaction of aurein 1.2 and its analogue with DPPC lipid bilayer. Sajjadiyan Z; Cheraghi N; Mohammadinejad S; Hassani L J Biol Phys; 2017 Mar; 43(1):127-137. PubMed ID: 28130642 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]