These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
483 related articles for article (PubMed ID: 23506703)
1. The use of biopartitioning micellar chromatography and immobilized artificial membrane column for in silico and in vitro determination of blood-brain barrier penetration of phenols. Stępnik KE; Malinowska I J Chromatogr A; 2013 Apr; 1286():127-36. PubMed ID: 23506703 [TBL] [Abstract][Full Text] [Related]
2. in vitro and in silico determination of oral, jejunum and Caco-2 human absorption of fatty acids and polyphenols. Micellar liquid chromatography. Stępnik KE; Malinowska I; Rój E Talanta; 2014 Dec; 130():265-73. PubMed ID: 25159408 [TBL] [Abstract][Full Text] [Related]
3. Potential of biopartitioning micellar chromatography as an in vitro technique for predicting drug penetration across the blood-brain barrier. Escuder-Gilabert L; Molero-Monfort M; Villanueva-Camañas RM; Sagrado S; Medina-Hernández MJ J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Aug; 807(2):193-201. PubMed ID: 15203029 [TBL] [Abstract][Full Text] [Related]
4. Characterization of biopartitioning micellar chromatography system using monolithic column by linear solvation energy relationship and application to predict blood-brain barrier penetration. Lu R; Sun J; Wang Y; Li H; Liu J; Fang L; He Z J Chromatogr A; 2009 Jul; 1216(27):5190-8. PubMed ID: 19481214 [TBL] [Abstract][Full Text] [Related]
5. Chromatographic estimation of drug disposition properties by means of immobilized artificial membranes (IAM) and C18 columns. Lázaro E; Ràfols C; Abraham MH; Rosés M J Med Chem; 2006 Aug; 49(16):4861-70. PubMed ID: 16884298 [TBL] [Abstract][Full Text] [Related]
6. Biopartitioning micellar chromatography under different conditions: Insight into the retention mechanism and the potential to model biological processes. Tsopelas F; Danias P; Pappa A; Tsantili-Kakoulidou A J Chromatogr A; 2020 Jun; 1621():461027. PubMed ID: 32276854 [TBL] [Abstract][Full Text] [Related]
7. Predicting drug penetration across the blood-brain barrier: comparison of micellar liquid chromatography and immobilized artificial membrane liquid chromatography. De Vrieze M; Lynen F; Chen K; Szucs R; Sandra P Anal Bioanal Chem; 2013 Jul; 405(18):6029-41. PubMed ID: 23719933 [TBL] [Abstract][Full Text] [Related]
8. Lipophilic and polar interaction forces between acidic drugs and membrane phospholipids encoded in IAM-HPLC indexes: their role in membrane partition and relationships with BBB permeation data. Grumetto L; Carpentiero C; Di Vaio P; Frecentese F; Barbato F J Pharm Biomed Anal; 2013 Mar; 75():165-72. PubMed ID: 23261809 [TBL] [Abstract][Full Text] [Related]
9. Lipophilic and electrostatic forces encoded in IAM-HPLC indexes of basic drugs: their role in membrane partition and their relationships with BBB passage data. Grumetto L; Carpentiero C; Barbato F Eur J Pharm Sci; 2012 Apr; 45(5):685-92. PubMed ID: 22306648 [TBL] [Abstract][Full Text] [Related]
10. Development of predictive retention-activity models of butyrophenones by biopartitioning micellar chromatography. Martín-Biosca Y; Molero-Monfort M; Sagrado S; Villanueva-Camañas RM; Medina-Hernández MJ Biomed Chromatogr; 2001 Aug; 15(5):334-41. PubMed ID: 11507715 [TBL] [Abstract][Full Text] [Related]
11. Biomimetic Chromatographic Studies Combined with the Computational Approach to Investigate the Ability of Triterpenoid Saponins of Plant Origin to Cross the Blood-Brain Barrier. Stępnik K Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808219 [TBL] [Abstract][Full Text] [Related]
12. Indexes of polar interactions between ionizable drugs and membrane phospholipids measured by IAM-HPLC: their relationships with data of Blood-Brain Barrier passage. Grumetto L; Russo G; Barbato F Eur J Pharm Sci; 2014 Dec; 65():139-46. PubMed ID: 25262853 [TBL] [Abstract][Full Text] [Related]
13. Determination of in Vitro and in Silico Indexes for the Modeling of Blood-Brain Barrier Partitioning of Drugs via Micellar and Immobilized Artificial Membrane Liquid Chromatography. Russo G; Grumetto L; Szucs R; Barbato F; Lynen F J Med Chem; 2017 May; 60(9):3739-3754. PubMed ID: 28399367 [TBL] [Abstract][Full Text] [Related]
14. Biopartitioning micellar chromatography to predict blood to lung, blood to liver, blood to fat and blood to skin partition coefficients of drugs. Martín-Biosca Y; Torres-Cartas S; Villanueva-Camañas RM; Sagrado S; Medina-Hernández MJ Anal Chim Acta; 2009 Jan; 632(2):296-303. PubMed ID: 19110108 [TBL] [Abstract][Full Text] [Related]
15. Mixed micellar liquid chromatography methods: modelling quantitative retention-activity relationships of angiotensin converting enzyme inhibitors. Wu LP; Cui Y; Xiong MJ; Wang SR; Chen C; Ye LM Biomed Chromatogr; 2008 Nov; 22(11):1243-51. PubMed ID: 18651592 [TBL] [Abstract][Full Text] [Related]
16. Immobilized Artificial Membrane HPLC Derived Parameters vs PAMPA-BBB Data in Estimating in Situ Measured Blood-Brain Barrier Permeation of Drugs. Grumetto L; Russo G; Barbato F Mol Pharm; 2016 Aug; 13(8):2808-16. PubMed ID: 27377191 [TBL] [Abstract][Full Text] [Related]
18. Reversed-phase liquid chromatography with octadecylsilyl, immobilized artificial membrane and cholesterol columns in correlation studies with in silico biological descriptors of newly synthesized antiproliferative and analgesic active compounds. Janicka M; Sztanke M; Sztanke K J Chromatogr A; 2013 Nov; 1318():92-101. PubMed ID: 24157086 [TBL] [Abstract][Full Text] [Related]