These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Regional cerebral glucose metabolism in man during wakefulness, sleep, and dreaming. Heiss WD; Pawlik G; Herholz K; Wagner R; Wienhard K Brain Res; 1985 Feb; 327(1-2):362-6. PubMed ID: 3872693 [TBL] [Abstract][Full Text] [Related]
4. Reproducibility of cerebral glucose utilization measured by PET and the [18F]-2-fluoro-2-deoxy-d-glucose method in resting, healthy human subjects. Maquet P; Dive D; Salmon E; von Frenckel R; Franck G Eur J Nucl Med; 1990; 16(4-6):267-73. PubMed ID: 2351175 [TBL] [Abstract][Full Text] [Related]
5. Serotonin control of sleep-wake behavior. Monti JM Sleep Med Rev; 2011 Aug; 15(4):269-81. PubMed ID: 21459634 [TBL] [Abstract][Full Text] [Related]
6. Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Braun AR; Balkin TJ; Wesenten NJ; Carson RE; Varga M; Baldwin P; Selbie S; Belenky G; Herscovitch P Brain; 1997 Jul; 120 ( Pt 7)():1173-97. PubMed ID: 9236630 [TBL] [Abstract][Full Text] [Related]
7. Analysis of kinetic rate constants in [18F]fluorodeoxyglucose model using a least square fitting package SALS (statistical analysis with least squares). Uehara S; Kuwabara Y; Ichiya Y; Otsuka M; Ayabe Y; Miyake Y; Masuda K; Yoshimura A Radioisotopes; 1987 Dec; 36(12):653-6. PubMed ID: 3502293 [TBL] [Abstract][Full Text] [Related]
8. Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of [18F]-2-fluoro-2-deoxy-D-glucose. Heiss WD; Pawlik G; Herholz K; Wagner R; Göldner H; Wienhard K J Cereb Blood Flow Metab; 1984 Jun; 4(2):212-23. PubMed ID: 6609929 [TBL] [Abstract][Full Text] [Related]
9. Effects of human aging on patterns of local cerebral glucose utilization determined by the [18F]fluorodeoxyglucose method. Kuhl DE; Metter EJ; Riege WH; Phelps ME J Cereb Blood Flow Metab; 1982; 2(2):163-71. PubMed ID: 6978885 [TBL] [Abstract][Full Text] [Related]
10. Local cerebral glucose utilization during waking and slow wave sleep in the cat. A [14C]deoxyglucose study. Petitjean F; Seguin S; Des Rosiers MH; Salvert D; Buda C; Janin M; Debilly G; Jouvet M; Bobillier P Neurosci Lett; 1982 Sep; 32(1):91-7. PubMed ID: 7145230 [TBL] [Abstract][Full Text] [Related]
11. Sleep-Wake Differences in Relative Regional Cerebral Metabolic Rate for Glucose among Patients with Insomnia Compared with Good Sleepers. Kay DB; Karim HT; Soehner AM; Hasler BP; Wilckens KA; James JA; Aizenstein HJ; Price JC; Rosario BL; Kupfer DJ; Germain A; Hall MH; Franzen PL; Nofzinger EA; Buysse DJ Sleep; 2016 Oct; 39(10):1779-1794. PubMed ID: 27568812 [TBL] [Abstract][Full Text] [Related]
12. Positron emission tomography with deoxyglucose-F18 imaging of sleep. Buchsbaum MS; Hazlett EA; Wu J; Bunney WE Neuropsychopharmacology; 2001 Nov; 25(5 Suppl):S50-6. PubMed ID: 11682274 [TBL] [Abstract][Full Text] [Related]
13. Regional cerebral glucose metabolism in children with deterioration of one or more cognitive functions and continuous spike-and-wave discharges during sleep. Maquet P; Hirsch E; Metz-Lutz MN; Motte J; Dive D; Marescaux C; Franck G Brain; 1995 Dec; 118 ( Pt 6)():1497-520. PubMed ID: 8595480 [TBL] [Abstract][Full Text] [Related]
14. The effect of sleep deprivation on cerebral glucose metabolic rate in normal humans assessed with positron emission tomography. Wu JC; Gillin JC; Buchsbaum MS; Hershey T; Hazlett E; Sicotte N; Bunney WE Sleep; 1991 Apr; 14(2):155-62. PubMed ID: 1866529 [TBL] [Abstract][Full Text] [Related]
15. A prominent role for amygdaloid complexes in the Variability in Heart Rate (VHR) during Rapid Eye Movement (REM) sleep relative to wakefulness. Desseilles M; Vu TD; Laureys S; Peigneux P; Degueldre C; Phillips C; Maquet P Neuroimage; 2006 Sep; 32(3):1008-15. PubMed ID: 16875846 [TBL] [Abstract][Full Text] [Related]
16. Alterations in regional cerebral glucose metabolism across waking and non-rapid eye movement sleep in depression. Nofzinger EA; Buysse DJ; Germain A; Price JC; Meltzer CC; Miewald JM; Kupfer DJ Arch Gen Psychiatry; 2005 Apr; 62(4):387-96. PubMed ID: 15809406 [TBL] [Abstract][Full Text] [Related]
17. The relationship between social alienation and disorganized thinking in normal subjects and localized cerebral glucose metabolic rates assessed by positron emission tomography. Gottschalk LA; Fronczek J; Abel L; Buchsbaum MS Compr Psychiatry; 1992; 33(5):332-41. PubMed ID: 1395553 [TBL] [Abstract][Full Text] [Related]
18. [Study of regional cerebral glucose metabolism, in man, while awake or asleep, by positron emission tomography]. Franck G; Salmon E; Poirrier R; Sadzot B; Franco G Rev Electroencephalogr Neurophysiol Clin; 1987 Mar; 17(1):71-7. PubMed ID: 3495831 [TBL] [Abstract][Full Text] [Related]
19. [Contribution of positron emission tomography in the study of wakefulness and sleep. Status of the question]. Maquet P Neurophysiol Clin; 1995; 25(6):342-50. PubMed ID: 8904196 [TBL] [Abstract][Full Text] [Related]
20. Neurobiology of non-REM sleep in depression: further evidence for hypofrontality and thalamic dysregulation. Germain A; Nofzinger EA; Kupfer DJ; Buysse DJ Am J Psychiatry; 2004 Oct; 161(10):1856-63. PubMed ID: 15465983 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]