BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 23506892)

  • 21. [Nucleotide-sugar transporters].
    Ishida N; Kawakita M
    Tanpakushitsu Kakusan Koso; 2003 Jun; 48(8 Suppl):1041-8. PubMed ID: 12807007
    [No Abstract]   [Full Text] [Related]  

  • 22. SLC35A5 Protein-A Golgi Complex Member with Putative Nucleotide Sugar Transport Activity.
    Sosicka P; Bazan B; Maszczak-Seneczko D; Shauchuk Y; Olczak T; Olczak M
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30641943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of nucleotides on translocation of sugar nucleotides and adenosine 3'-phosphate 5'-phosphosulfate into Golgi apparatus vesicles.
    Capasso JM; Hirschberg CB
    Biochim Biophys Acta; 1984 Oct; 777(1):133-9. PubMed ID: 6487615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Serum bikunin isoforms in congenital disorders of glycosylation and linkeropathies.
    Haouari W; Dubail J; Lounis-Ouaras S; Prada P; Bennani R; Roseau C; Huber C; Afenjar A; Colin E; Vuillaumier-Barrot S; Seta N; Foulquier F; Poüs C; Cormier-Daire V; Bruneel A
    J Inherit Metab Dis; 2020 Nov; 43(6):1349-1359. PubMed ID: 32700771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two functionally divergent UDP-Gal nucleotide sugar transporters participate in phosphoglycan synthesis in Leishmania major.
    Capul AA; Barron T; Dobson DE; Turco SJ; Beverley SM
    J Biol Chem; 2007 May; 282(19):14006-17. PubMed ID: 17347153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural basis of nucleotide sugar transport across the Golgi membrane.
    Parker JL; Newstead S
    Nature; 2017 Nov; 551(7681):521-524. PubMed ID: 29143814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Absence of nucleoside diphosphatase activities in the yeast secretory pathway does not abolish nucleotide sugar-dependent protein glycosylation.
    D'Alessio C; Caramelo JJ; Parodi AJ
    J Biol Chem; 2005 Dec; 280(49):40417-27. PubMed ID: 16172132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of AtNST-KT1, a novel UDP-galactose transporter from Arabidopsis thaliana.
    Rollwitz I; Santaella M; Hille D; Flügge UI; Fischer K
    FEBS Lett; 2006 Jul; 580(17):4246-51. PubMed ID: 16831428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleotide Sugar Transporter SLC35 Family Structure and Function.
    Hadley B; Litfin T; Day CJ; Haselhorst T; Zhou Y; Tiralongo J
    Comput Struct Biotechnol J; 2019; 17():1123-1134. PubMed ID: 31462968
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conserved Glu-47 and Lys-50 residues are critical for UDP-
    Toscanini MA; Favarolo MB; Gonzalez Flecha FL; Ebert B; Rautengarten C; Bredeston LM
    J Biol Chem; 2019 Jun; 294(26):10042-10054. PubMed ID: 31118275
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics of PAPS translocase: evidence for an antiport mechanism.
    Ozeran JD; Westley J; Schwartz NB
    Biochemistry; 1996 Mar; 35(12):3685-94. PubMed ID: 8619988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular cloning and identification of 3'-phosphoadenosine 5'-phosphosulfate transporter.
    Kamiyama S; Suda T; Ueda R; Suzuki M; Okubo R; Kikuchi N; Chiba Y; Goto S; Toyoda H; Saigo K; Watanabe M; Narimatsu H; Jigami Y; Nishihara S
    J Biol Chem; 2003 Jul; 278(28):25958-63. PubMed ID: 12716889
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An insight into the orphan nucleotide sugar transporter SLC35A4.
    Sosicka P; Maszczak-Seneczko D; Bazan B; Shauchuk Y; Kaczmarek B; Olczak M
    Biochim Biophys Acta Mol Cell Res; 2017 May; 1864(5):825-838. PubMed ID: 28167211
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The inside and outside: topological issues in plant cell wall biosynthesis and the roles of nucleotide sugar transporters.
    Temple H; Saez-Aguayo S; Reyes FC; Orellana A
    Glycobiology; 2016 Sep; 26(9):913-925. PubMed ID: 27507902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissection of TMEM165 function in Golgi glycosylation and its Mn
    Lebredonchel E; Houdou M; Potelle S; de Bettignies G; Schulz C; Krzewinski Recchi MA; Lupashin V; Legrand D; Klein A; Foulquier F
    Biochimie; 2019 Oct; 165():123-130. PubMed ID: 31351090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The promiscuous binding pocket of SLC35A1 ensures redundant transport of CDP-ribitol to the Golgi.
    Ury B; Potelle S; Caligiore F; Whorton MR; Bommer GT
    J Biol Chem; 2021; 296():100789. PubMed ID: 34015330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transporters of nucleotide sugars, nucleotide sulfate and ATP in the Golgi apparatus membrane: where next?
    Hirschberg CB
    Glycobiology; 1997 Mar; 7(2):169-71. PubMed ID: 9134422
    [No Abstract]   [Full Text] [Related]  

  • 38. Endoplasmic reticulum/golgi nucleotide sugar transporters contribute to the cellular release of UDP-sugar signaling molecules.
    Sesma JI; Esther CR; Kreda SM; Jones L; O'Neal W; Nishihara S; Nicholas RA; Lazarowski ER
    J Biol Chem; 2009 May; 284(18):12572-83. PubMed ID: 19276090
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Congenital disorders of glycosylation: a concise chart of glycocalyx dysfunction.
    Hennet T; Cabalzar J
    Trends Biochem Sci; 2015 Jul; 40(7):377-84. PubMed ID: 25840516
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biometals and glycosylation in humans: Congenital disorders of glycosylation shed lights into the crucial role of Golgi manganese homeostasis.
    Foulquier F; Legrand D
    Biochim Biophys Acta Gen Subj; 2020 Oct; 1864(10):129674. PubMed ID: 32599014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.