These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 23507038)

  • 1. Development of highly efficient, low-cost lignocellulolytic enzyme systems in the post-genomic era.
    Liu G; Qin Y; Li Z; Qu Y
    Biotechnol Adv; 2013 Nov; 31(6):962-75. PubMed ID: 23507038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of filamentous fungi for efficient conversion of lignocellulose: Tools, recent advances and prospects.
    Liu G; Qu Y
    Biotechnol Adv; 2019; 37(4):519-529. PubMed ID: 30576717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives.
    Dashtban M; Schraft H; Qin W
    Int J Biol Sci; 2009 Sep; 5(6):578-95. PubMed ID: 19774110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time dependence of enzyme synergism during the degradation of model and natural lignocellulosic substrates.
    Malgas S; Thoresen M; van Dyk JS; Pletschke BI
    Enzyme Microb Technol; 2017 Aug; 103():1-11. PubMed ID: 28554379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Progress on cellulase and enzymatic hydrolysis of lignocellulosic biomass].
    Fang X; Qin Y; Li X; Wang L; Wang T; Zhu M; Qu Y
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):864-9. PubMed ID: 20954385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Induction and regulation of cellulase expression in filamentous fungi: a review].
    Zhang F; Bai F; Zhao X
    Sheng Wu Gong Cheng Xue Bao; 2016 Nov; 32(11):1481-1495. PubMed ID: 29034619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Progress in the production of lignocellulolytic enzyme systems using Penicillium species].
    Liu G; Gao L; Qu Y
    Sheng Wu Gong Cheng Xue Bao; 2021 Mar; 37(3):1058-1069. PubMed ID: 33783168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput enzymatic hydrolysis of lignocellulosic biomass via in-situ regeneration.
    Bharadwaj R; Wong A; Knierim B; Singh S; Holmes BM; Auer M; Simmons BA; Adams PD; Singh AK
    Bioresour Technol; 2011 Jan; 102(2):1329-37. PubMed ID: 20884206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomics-based compositional analysis of complex cellulase-hemicellulase mixtures.
    Chundawat SP; Lipton MS; Purvine SO; Uppugundla N; Gao D; Balan V; Dale BE
    J Proteome Res; 2011 Oct; 10(10):4365-72. PubMed ID: 21678892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of lignocellulolytic enzymes from white-rot fungi.
    Manavalan T; Manavalan A; Heese K
    Curr Microbiol; 2015 Apr; 70(4):485-98. PubMed ID: 25487116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient production and evaluation of lignocellulolytic enzymes using a constitutive protein expression system in Penicillium oxalicum.
    Hu Y; Xue H; Liu G; Song X; Qu Y
    J Ind Microbiol Biotechnol; 2015 Jun; 42(6):877-87. PubMed ID: 25868624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the remaining activity of lignocellulolytic enzymes by membrane entrapment.
    Chang KL; Thitikorn-amorn J; Chen SH; Hsieh JF; Ratanakhanokchai K; Huang PJ; Lin TC; Chen ST
    Bioresour Technol; 2011 Jan; 102(2):519-23. PubMed ID: 20952190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of lignocellulolytic enzymes during different growth phases of Ganoderma lucidum strain G0119 using genomic, transcriptomic and secretomic analyses.
    Zhou S; Zhang J; Ma F; Tang C; Tang Q; Zhang X
    PLoS One; 2018; 13(5):e0198404. PubMed ID: 29852018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription analysis of lignocellulolytic enzymes of Penicillium decumbens 114-2 and its catabolite-repression-resistant mutant.
    Wei X; Zheng K; Chen M; Liu G; Li J; Lei Y; Qin Y; Qu Y
    C R Biol; 2011 Nov; 334(11):806-11. PubMed ID: 22078737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered microbial systems for enhanced conversion of lignocellulosic biomass.
    Elkins JG; Raman B; Keller M
    Curr Opin Biotechnol; 2010 Oct; 21(5):657-62. PubMed ID: 20579868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes.
    Saldarriaga-Hernández S; Velasco-Ayala C; Leal-Isla Flores P; de Jesús Rostro-Alanis M; Parra-Saldivar R; Iqbal HMN; Carrillo-Nieves D
    Int J Biol Macromol; 2020 Oct; 161():1099-1116. PubMed ID: 32526298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology.
    Hasunuma T; Okazaki F; Okai N; Hara KY; Ishii J; Kondo A
    Bioresour Technol; 2013 May; 135():513-22. PubMed ID: 23195654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative proteomic analysis of lignocellulolytic enzymes by Phanerochaete chrysosporium on different lignocellulosic biomass.
    Adav SS; Ravindran A; Sze SK
    J Proteomics; 2012 Feb; 75(5):1493-504. PubMed ID: 22146477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Synergistic systems for biodegradations of lignocellulose in microorganisms: a review].
    Liang C; Xue Y; Ma Y
    Sheng Wu Gong Cheng Xue Bao; 2010 Oct; 26(10):1327-32. PubMed ID: 21218618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Onsite enzyme production during bioethanol production from biomass: screening for suitable fungal strains.
    Sørensen A; Teller PJ; Lübeck PS; Ahring BK
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1058-70. PubMed ID: 21360092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.