These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 23507038)

  • 21. Secreted protein extract analyses present the plant pathogen Alternaria alternata as a suitable industrial enzyme toolbox.
    García-Calvo L; Ullán RV; Fernández-Aguado M; García-Lino AM; Balaña-Fouce R; Barreiro C
    J Proteomics; 2018 Apr; 177():48-64. PubMed ID: 29438850
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing.
    Yamada R; Hasunuma T; Kondo A
    Biotechnol Adv; 2013 Nov; 31(6):754-63. PubMed ID: 23473971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production.
    Bhattacharya AS; Bhattacharya A; Pletschke BI
    Biotechnol Lett; 2015 Jun; 37(6):1117-29. PubMed ID: 25656474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fungal pretreatment of lignocellulosic biomass.
    Wan C; Li Y
    Biotechnol Adv; 2012; 30(6):1447-57. PubMed ID: 22433674
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overview of Lignocellulolytic Enzyme Systems with Special Reference to Valorization of Lignocellulosic Biomass.
    Qaiser H; Kaleem A; Abdullah R; Iqtedar M; Hoessli DC
    Protein Pept Lett; 2021; 28(12):1349-1364. PubMed ID: 34749601
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lignocellulosic residues: biodegradation and bioconversion by fungi.
    Sánchez C
    Biotechnol Adv; 2009; 27(2):185-94. PubMed ID: 19100826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota.
    Ni J; Tokuda G
    Biotechnol Adv; 2013 Nov; 31(6):838-50. PubMed ID: 23623853
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative proteomic analysis of secretome of microbial consortium during saw dust utilization.
    Adav SS; Ravindran A; Cheow ES; Sze SK
    J Proteomics; 2012 Oct; 75(18):5590-603. PubMed ID: 22992538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels.
    Wu W; Davis RW; Tran-Gyamfi MB; Kuo A; LaButti K; Mihaltcheva S; Hundley H; Chovatia M; Lindquist E; Barry K; Grigoriev IV; Henrissat B; Gladden JM
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2603-2618. PubMed ID: 28078400
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of Key Components for the Optimization of Cellulase Mixtures Using a Proteomic Strategy.
    Qu J; Zhu J; Liu G; Qu Y
    Methods Mol Biol; 2018; 1796():115-122. PubMed ID: 29856050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass.
    Adsul MG; Singhvi MS; Gaikaiwari SA; Gokhale DV
    Bioresour Technol; 2011 Mar; 102(6):4304-12. PubMed ID: 21277771
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Lignocellulose degrading bacteria and their genes encoding cellulase/hemicellulase in rumen--a review].
    Chen F; Zhu Y; Dong X; Liu L; Huang L; Dai X
    Wei Sheng Wu Xue Bao; 2010 Aug; 50(8):981-7. PubMed ID: 20931863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Current models in bacterial hemicellulase-encoding gene regulation.
    Novak JK; Gardner JG
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):39. PubMed ID: 38175245
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plant pathogens as a source of diverse enzymes for lignocellulose digestion.
    Gibson DM; King BC; Hayes ML; Bergstrom GC
    Curr Opin Microbiol; 2011 Jun; 14(3):264-70. PubMed ID: 21536481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improvement of cellulolytic enzyme production and performance by rational designing expression regulatory network and enzyme system composition.
    Li Z; Liu G; Qu Y
    Bioresour Technol; 2017 Dec; 245(Pt B):1718-1726. PubMed ID: 28684177
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown.
    Hasunuma T; Ishii J; Kondo A
    Curr Opin Chem Biol; 2015 Dec; 29():1-9. PubMed ID: 26113493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proteomic analysis of pH and strains dependent protein secretion of Trichoderma reesei.
    Adav SS; Ravindran A; Chao LT; Tan L; Singh S; Sze SK
    J Proteome Res; 2011 Oct; 10(10):4579-96. PubMed ID: 21879708
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens.
    Liu G; Zhang L; Wei X; Zou G; Qin Y; Ma L; Li J; Zheng H; Wang S; Wang C; Xun L; Zhao GP; Zhou Z; Qu Y
    PLoS One; 2013; 8(2):e55185. PubMed ID: 23383313
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family.
    Harris PV; Welner D; McFarland KC; Re E; Navarro Poulsen JC; Brown K; Salbo R; Ding H; Vlasenko E; Merino S; Xu F; Cherry J; Larsen S; Lo Leggio L
    Biochemistry; 2010 Apr; 49(15):3305-16. PubMed ID: 20230050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of salt-adapted secreted lignocellulolytic enzymes from the mangrove fungus Pestalotiopsis sp.
    Arfi Y; Chevret D; Henrissat B; Berrin JG; Levasseur A; Record E
    Nat Commun; 2013; 4():1810. PubMed ID: 23651998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.