These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 23507038)
41. Comparative evaluation of lignocellulolytic activities of filamentous cultures of monocentric and polycentric anaerobic fungi. Dagar SS; Kumar S; Mudgil P; Puniya AK Anaerobe; 2018 Apr; 50():76-79. PubMed ID: 29454109 [TBL] [Abstract][Full Text] [Related]
42. Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulase desorption for potential recycling. Zhu Z; Sathitsuksanoh N; Percival Zhang YH Analyst; 2009 Nov; 134(11):2267-72. PubMed ID: 19838414 [TBL] [Abstract][Full Text] [Related]
43. Fungal lignocellulolytic enzymes and lignocellulose: A critical review on their contribution to multiproduct biorefinery and global biofuel research. Saini S; Sharma KK Int J Biol Macromol; 2021 Dec; 193(Pt B):2304-2319. PubMed ID: 34800524 [TBL] [Abstract][Full Text] [Related]
44. Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis. Tian L; Liu S; Wang S; Wang L Sci Rep; 2016 Mar; 6():23605. PubMed ID: 27009476 [TBL] [Abstract][Full Text] [Related]
45. Fungal strain improvement for efficient cellulase production and lignocellulosic biorefinery: Current status and future prospects. Yang J; Yue HR; Pan LY; Feng JX; Zhao S; Suwannarangsee S; Chempreda V; Liu CG; Zhao XQ Bioresour Technol; 2023 Oct; 385():129449. PubMed ID: 37406833 [TBL] [Abstract][Full Text] [Related]
46. Assessing cellulase performance on pretreated lignocellulosic biomass using saccharification and fermentation-based protocols. Dowe N Methods Mol Biol; 2009; 581():233-45. PubMed ID: 19768626 [TBL] [Abstract][Full Text] [Related]
47. Metabolic characterization of anaerobic fungi provides a path forward for bioprocessing of crude lignocellulose. Henske JK; Wilken SE; Solomon KV; Smallwood CR; Shutthanandan V; Evans JE; Theodorou MK; O'Malley MA Biotechnol Bioeng; 2018 Apr; 115(4):874-884. PubMed ID: 29240224 [TBL] [Abstract][Full Text] [Related]
48. Temperature sensitivity of cellulase adsorption on lignin and its impact on enzymatic hydrolysis of lignocellulosic biomass. Zheng Y; Zhang S; Miao S; Su Z; Wang P J Biotechnol; 2013 Jul; 166(3):135-43. PubMed ID: 23648794 [TBL] [Abstract][Full Text] [Related]
49. Fungal secretomes--nature's toolbox for white biotechnology. Bouws H; Wattenberg A; Zorn H Appl Microbiol Biotechnol; 2008 Sep; 80(3):381-8. PubMed ID: 18636256 [TBL] [Abstract][Full Text] [Related]
50. Addressing challenges in production of cellulases for biomass hydrolysis: Targeted interventions into the genetics of cellulase producing fungi. Sukumaran RK; Christopher M; Kooloth-Valappil P; Sreeja-Raju A; Mathew RM; Sankar M; Puthiyamadam A; Adarsh VP; Aswathi A; Rebinro V; Abraham A; Pandey A Bioresour Technol; 2021 Jun; 329():124746. PubMed ID: 33610429 [TBL] [Abstract][Full Text] [Related]
51. Potential enzyme cost reduction with the addition of surfactant during the hydrolysis of pretreated softwood. Tu M; Saddler JN Appl Biochem Biotechnol; 2010 May; 161(1-8):274-87. PubMed ID: 19946759 [TBL] [Abstract][Full Text] [Related]
52. Improvement of Lignocellulolytic Enzyme Production Mediated by Calcium Signaling in Bacillus subtilis Z2 under Graphene Oxide Stress. Liu S; Gao Y; Quan L; Yang M; Wang YZ; Hou C Appl Environ Microbiol; 2022 Oct; 88(19):e0096022. PubMed ID: 36121214 [TBL] [Abstract][Full Text] [Related]
53. Interactions between fungal growth, substrate utilization, and enzyme production during solid substrate cultivation of Phanerochaete chrysosporium on cotton stalks. Shi J; Chinn MS; Sharma-Shivappa RR Bioprocess Biosyst Eng; 2014 Dec; 37(12):2463-73. PubMed ID: 24908113 [TBL] [Abstract][Full Text] [Related]
54. [Studies on lignocellulolytic enzymes production and biomass degradation of Pleurotus sp2 and Trametes gallica in wheat straw cultures]. Xie J; Sun X; Ren L; Zhang YZ Sheng Wu Gong Cheng Xue Bao; 2001 Sep; 17(5):575-8. PubMed ID: 11797225 [TBL] [Abstract][Full Text] [Related]
55. Exploring the bioprospecting and biotechnological potential of white-rot and anaerobic Neocallimastigomycota fungi: peptidases, esterases, and lignocellulolytic enzymes. da Silva RR; Pedezzi R; Souto TB Appl Microbiol Biotechnol; 2017 Apr; 101(8):3089-3101. PubMed ID: 28314873 [TBL] [Abstract][Full Text] [Related]
56. Review of research progress on the production of cellulase from filamentous fungi. Zhang Z; Xing J; Li X; Lu X; Liu G; Qu Y; Zhao J Int J Biol Macromol; 2024 Oct; 277(Pt 4):134539. PubMed ID: 39122065 [TBL] [Abstract][Full Text] [Related]
57. [Comparison of lignocellulolytic enzyme profiles secreted by Panus conchatus and Phanerochaete chrysosporium during solid state cultures]. Wang C; Yu H; Fu S Wei Sheng Wu Xue Bao; 1999 Apr; 39(2):127-31. PubMed ID: 12555416 [TBL] [Abstract][Full Text] [Related]
58. Ligninolytic fungal laccases and their biotechnological applications. Singh Arora D; Kumar Sharma R Appl Biochem Biotechnol; 2010 Mar; 160(6):1760-88. PubMed ID: 19513857 [TBL] [Abstract][Full Text] [Related]
59. Horticultural waste as the substrate for cellulase and hemicellulase production by Trichoderma reesei under solid-state fermentation. Xin F; Geng A Appl Biochem Biotechnol; 2010 Sep; 162(1):295-306. PubMed ID: 19707729 [TBL] [Abstract][Full Text] [Related]
60. [Biodegradation of lignocellulose by Penicillium simplicissimum and characters of lignocellulolytic enzymes]. Shen Y; Hu TJ; Zeng GM; Huang DL; Yin L; Liu Y; Wu JJ; Liu H Huan Jing Ke Xue; 2013 Feb; 34(2):781-8. PubMed ID: 23668155 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]