These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 23507247)

  • 1. Neural network processing of microbial fuel cell signals for the identification of chemicals present in water.
    Feng Y; Barr W; Harper WF
    J Environ Manage; 2013 May; 120():84-92. PubMed ID: 23507247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosensing with microbial fuel cells and artificial neural networks: laboratory and field investigations.
    Feng Y; Harper WF
    J Environ Manage; 2013 Nov; 130():369-74. PubMed ID: 24121551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using microbial fuel cell output metrics and nonlinear modeling techniques for smart biosensing.
    Feng Y; Kayode O; Harper WF
    Sci Total Environ; 2013 Apr; 449():223-8. PubMed ID: 23428752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting recalcitrant organic chemicals in water with microbial fuel cells and artificial neural networks.
    King ST; Sylvander M; Kheperu M; Racz L; Harper WF
    Sci Total Environ; 2014 Nov; 497-498():527-533. PubMed ID: 25155893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variations of electron flux and microbial community in air-cathode microbial fuel cells fed with different substrates.
    Yu J; Park Y; Cho H; Chun J; Seon J; Cho S; Lee T
    Water Sci Technol; 2012; 66(4):748-53. PubMed ID: 22766862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality.
    Di Lorenzo M; Thomson AR; Schneider K; Cameron PJ; Ieropoulos I
    Biosens Bioelectron; 2014 Dec; 62():182-8. PubMed ID: 25005554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Possibility of using a lithotrophic iron-oxidizing microbial fuel cell as a biosensor for detecting iron and manganese in water samples.
    Tran PH; Luong TT; Nguyen TT; Nguyen HQ; Duong HV; Kim BH; Pham HT
    Environ Sci Process Impacts; 2015 Oct; 17(10):1806-15. PubMed ID: 26343878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development of a low-cost single chamber microbial fuel cell type BOD sensor].
    Wu F; Liu Z; Zhou B; Zhou SG; Rao LQ; Wang YQ
    Huan Jing Ke Xue; 2010 Jul; 31(7):1596-600. PubMed ID: 20825031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic models for detection of toxicity in a microbial fuel cell based biosensor.
    Stein NE; Keesman KJ; Hamelers HV; van Straten G
    Biosens Bioelectron; 2011 Mar; 26(7):3115-20. PubMed ID: 21216586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of selenite from wastewater using microbial fuel cells.
    Catal T; Bermek H; Liu H
    Biotechnol Lett; 2009 Aug; 31(8):1211-6. PubMed ID: 19343501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial fuel cell based biosensor for in situ monitoring of anaerobic digestion process.
    Liu Z; Liu J; Zhang S; Xing XH; Su Z
    Bioresour Technol; 2011 Nov; 102(22):10221-9. PubMed ID: 21945210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load.
    Mohan SV; Raghavulu SV; Peri D; Sarma PN
    Biosens Bioelectron; 2009 Mar; 24(7):2021-7. PubMed ID: 19058958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs).
    Sharma Y; Li B
    Bioresour Technol; 2010 Mar; 101(6):1844-50. PubMed ID: 19931449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges in microbial fuel cell development and operation.
    Kim BH; Chang IS; Gadd GM
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):485-94. PubMed ID: 17593364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy.
    Du Z; Li H; Gu T
    Biotechnol Adv; 2007; 25(5):464-82. PubMed ID: 17582720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Techniques for the study and development of microbial fuel cells: an electrochemical perspective.
    Zhao F; Slade RC; Varcoe JR
    Chem Soc Rev; 2009 Jul; 38(7):1926-39. PubMed ID: 19551173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer?
    Chouler J; Di Lorenzo M
    Biosensors (Basel); 2015 Jul; 5(3):450-70. PubMed ID: 26193327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon-based microfabricated microbial fuel cell toxicity sensor.
    Dávila D; Esquivel JP; Sabaté N; Mas J
    Biosens Bioelectron; 2011 Jan; 26(5):2426-30. PubMed ID: 21074397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors.
    Chang IS; Moon H; Jang JK; Kim BH
    Biosens Bioelectron; 2005 Mar; 20(9):1856-9. PubMed ID: 15681205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiphase electrode microbial fuel cell system that simultaneously converts organics coexisting in water and sediment phases into electricity.
    An J; Moon H; Chang IS
    Environ Sci Technol; 2010 Sep; 44(18):7145-50. PubMed ID: 20687550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.