These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 23507613)
1. Single cell stiffness measurement at various humidity conditions by nanomanipulation of a nano-needle. Shen Y; Nakajima M; Yang Z; Tajima H; Najdovski Z; Homma M; Fukuda T Nanotechnology; 2013 Apr; 24(14):145703. PubMed ID: 23507613 [TBL] [Abstract][Full Text] [Related]
2. Effect of ambient humidity on the strength of the adhesion force of single yeast cell inside environmental-SEM. Shen Y; Nakajima M; Ahmad MR; Kojima S; Homma M; Fukuda T Ultramicroscopy; 2011 Jul; 111(8):1176-83. PubMed ID: 21763235 [TBL] [Abstract][Full Text] [Related]
3. Design and characterization of nanoknife with buffering beam for in situ single-cell cutting. Shen Y; Nakajima M; Yang Z; Kojima S; Homma M; Fukuda T Nanotechnology; 2011 Jul; 22(30):305701. PubMed ID: 21697582 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the single yeast cell's adhesion to ITO substrates with various surface energies via ESEM nanorobotic manipulation system. Shen Y; Ahmad MR; Nakajima M; Kojima S; Homma M; Fukuda T IEEE Trans Nanobioscience; 2011 Dec; 10(4):217-24. PubMed ID: 22249767 [TBL] [Abstract][Full Text] [Related]
5. Study of the time effect on the strength of cell-cell adhesion force by a novel nano-picker. Shen Y; Nakajima M; Kojima S; Homma M; Fukuda T Biochem Biophys Res Commun; 2011 Jun; 409(2):160-5. PubMed ID: 21510921 [TBL] [Abstract][Full Text] [Related]
6. The effects of cell sizes, environmental conditions, and growth phases on the strength of individual W303 yeast cells inside ESEM. Ahmad MR; Nakajima M; Kojima S; Homma M; Fukuda T IEEE Trans Nanobioscience; 2008 Sep; 7(3):185-93. PubMed ID: 18779098 [TBL] [Abstract][Full Text] [Related]
7. Nanofork for single cells adhesion measurement via ESEM-nanomanipulator system. Ahmad MR; Nakajima M; Kojima M; Kojima S; Homma M; Fukuda T IEEE Trans Nanobioscience; 2012 Mar; 11(1):70-8. PubMed ID: 22275723 [TBL] [Abstract][Full Text] [Related]
8. Nanomanipulation of biological samples using a compact atomic force microscope under scanning electron microscope observation. Iwata F; Mizuguchi Y; Ko H; Ushiki T J Electron Microsc (Tokyo); 2011 Dec; 60(6):359-66. PubMed ID: 22049270 [TBL] [Abstract][Full Text] [Related]
9. A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly. Xie H; Haliyo DS; Régnier S Nanotechnology; 2009 May; 20(21):215301. PubMed ID: 19423927 [TBL] [Abstract][Full Text] [Related]
10. Mechanical sensing of the penetration of various nanoneedles into a living cell using atomic force microscopy. Obataya I; Nakamura C; Han S; Nakamura N; Miyake J Biosens Bioelectron; 2005 Feb; 20(8):1652-5. PubMed ID: 15626623 [TBL] [Abstract][Full Text] [Related]
11. Nanomanipulation of extended single-DNA molecules on modified mica surfaces using the atomic force microscopy. Lü JH Colloids Surf B Biointerfaces; 2004 Dec; 39(4):177-80. PubMed ID: 15555900 [TBL] [Abstract][Full Text] [Related]
12. Investigation of the morphology, viability and mechanical properties of yeast cells in environmental SEM. Ren Y; Donald AM; Zhang Z Scanning; 2008; 30(6):435-42. PubMed ID: 18683192 [TBL] [Abstract][Full Text] [Related]
13. Needle insertion into soft tissue: a survey. Abolhassani N; Patel R; Moallem M Med Eng Phys; 2007 May; 29(4):413-31. PubMed ID: 16938481 [TBL] [Abstract][Full Text] [Related]
14. Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Pelling AE; Sehati S; Gralla EB; Valentine JS; Gimzewski JK Science; 2004 Aug; 305(5687):1147-50. PubMed ID: 15326353 [TBL] [Abstract][Full Text] [Related]
15. Nanoindentation methods to measure viscoelastic properties of single cells using sharp, flat, and buckling tips inside ESEM. Ahmad MR; Nakajima M; Kojima S; Homma M; Fukuda T IEEE Trans Nanobioscience; 2010 Mar; 9(1):12-23. PubMed ID: 19887332 [TBL] [Abstract][Full Text] [Related]
16. A novel needle trap device with single wall carbon nanotubes sol-gel sorbent packed for sampling and analysis of volatile organohalogen compounds in air. Heidari M; Bahrami A; Ghiasvand AR; Shahna FG; Soltanian AR Talanta; 2012 Nov; 101():314-21. PubMed ID: 23158328 [TBL] [Abstract][Full Text] [Related]
17. Contact detection for nanomanipulation in a scanning electron microscope. Ru C; To S Ultramicroscopy; 2012 Jul; 118():61-6. PubMed ID: 22728406 [TBL] [Abstract][Full Text] [Related]
18. Atomic force microscopy studies on the nanomechanical properties of Saccharomyces cerevisiae. Arfsten J; Leupold S; Bradtmöller C; Kampen I; Kwade A Colloids Surf B Biointerfaces; 2010 Aug; 79(1):284-90. PubMed ID: 20452756 [TBL] [Abstract][Full Text] [Related]
19. Immunogold labelling in environmental scanning electron microscopy: applicative features for complementary cytological interpretation. Cafiero G; Papale F; Grimaldi A; Rosso F; Barbarisi M; Tortora C; Marino G; Barbarisi A J Microsc; 2011 Jan; 241(1):83-93. PubMed ID: 21118204 [TBL] [Abstract][Full Text] [Related]