These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
604 related articles for article (PubMed ID: 23507891)
1. Biomaterials for periodontal regeneration: a review of ceramics and polymers. Shue L; Yufeng Z; Mony U Biomatter; 2012; 2(4):271-7. PubMed ID: 23507891 [TBL] [Abstract][Full Text] [Related]
2. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Sheikh Z; Hamdan N; Ikeda Y; Grynpas M; Ganss B; Glogauer M Biomater Res; 2017; 21():9. PubMed ID: 28593053 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related]
4. In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration. Danoux CB; Barbieri D; Yuan H; de Bruijn JD; van Blitterswijk CA; Habibovic P Biomatter; 2014; 4():e27664. PubMed ID: 24441389 [TBL] [Abstract][Full Text] [Related]
5. Comparison of platelet pellet and bioactive glass in periodontal regenerative therapy. Keles GC; Cetinkaya BO; Albayrak D; Koprulu H; Acikgoz G Acta Odontol Scand; 2006 Nov; 64(6):327-33. PubMed ID: 17123908 [TBL] [Abstract][Full Text] [Related]
6. [An experimental study on effect of astragalus polysaccharides on chitosan/polylactic acid scaffolds for repairing alveolar bone defects in dogs]. Xu C; Xian X; Guo F Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Jul; 21(7):748-52. PubMed ID: 17694669 [TBL] [Abstract][Full Text] [Related]
7. Resorbable PCEC/gelatin-bismuth doped bioglass-graphene oxide bilayer membranes for guided bone regeneration. Pazarçeviren AE; Evis Z; Keskin D; Tezcaner A Biomed Mater; 2019 Apr; 14(3):035018. PubMed ID: 30665204 [TBL] [Abstract][Full Text] [Related]
8. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Liao S; Wang W; Uo M; Ohkawa S; Akasaka T; Tamura K; Cui F; Watari F Biomaterials; 2005 Dec; 26(36):7564-71. PubMed ID: 16005963 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and characterization of chitosan-polyvinyl alcohol-bioactive glass hybrid membranes. Dias LL; Mansur HS; Donnici CL; Pereira MM Biomatter; 2011; 1(1):114-9. PubMed ID: 23507733 [TBL] [Abstract][Full Text] [Related]
10. Development and cell response of a new biodegradable composite scaffold for guided bone regeneration. Navarro M; Ginebra MP; Planell JA; Zeppetelli S; Ambrosio L J Mater Sci Mater Med; 2004 Apr; 15(4):419-22. PubMed ID: 15332610 [TBL] [Abstract][Full Text] [Related]
11. Membranes for Periodontal Regeneration--A Materials Perspective. Bottino MC; Thomas V Front Oral Biol; 2015; 17():90-100. PubMed ID: 26201279 [TBL] [Abstract][Full Text] [Related]
12. Combination of Bioactive Polymeric Membranes and Stem Cells for Periodontal Regeneration: In Vitro and In Vivo Analyses. Gonçalves F; de Moraes MS; Ferreira LB; Carreira AC; Kossugue PM; Boaro LC; Bentini R; Garcia CR; Sogayar MC; Arana-Chavez VE; Catalani LH PLoS One; 2016; 11(3):e0152412. PubMed ID: 27031990 [TBL] [Abstract][Full Text] [Related]
13. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. Huang X; Miao X J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281 [TBL] [Abstract][Full Text] [Related]
14. Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering. Montjovent MO; Mark S; Mathieu L; Scaletta C; Scherberich A; Delabarde C; Zambelli PY; Bourban PE; Applegate LA; Pioletti DP Bone; 2008 Mar; 42(3):554-64. PubMed ID: 18178142 [TBL] [Abstract][Full Text] [Related]
15. Recent advances in the development of GTR/GBR membranes for periodontal regeneration--a materials perspective. Bottino MC; Thomas V; Schmidt G; Vohra YK; Chu TM; Kowolik MJ; Janowski GM Dent Mater; 2012 Jul; 28(7):703-21. PubMed ID: 22592164 [TBL] [Abstract][Full Text] [Related]
16. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. Kamitakahara M; Ohtsuki C; Miyazaki T J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965 [TBL] [Abstract][Full Text] [Related]
17. The effect of bioactive glass content on synthesis and bioactivity of composite poly (lactic-co-glycolic acid)/bioactive glass substrate for tissue engineering. Yao J; Radin S; S Leboy P; Ducheyne P Biomaterials; 2005 May; 26(14):1935-43. PubMed ID: 15576167 [TBL] [Abstract][Full Text] [Related]
18. Developments in Alloplastic Bone Grafts and Barrier Membrane Biomaterials for Periodontal Guided Tissue and Bone Regeneration Therapy. Ashfaq R; Kovács A; Berkó S; Budai-Szűcs M Int J Mol Sci; 2024 Jul; 25(14):. PubMed ID: 39062989 [TBL] [Abstract][Full Text] [Related]
19. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique]. Lian Q; Zhuang P; Li C; Jin Z; Li D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010 [TBL] [Abstract][Full Text] [Related]
20. A Clinical Evaluation of Biphasic Calcium Phosphate Alloplast with and without a Flowable Bioabsorbable Guided Tissue Regeneration Barrier in the Treatment of Mandibular Molar Class II Furcation Defects. Kini V; Nayak DG; Uppoor AS J Contemp Dent Pract; 2016 Feb; 17(2):143-8. PubMed ID: 27207003 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]