These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 23508115)

  • 1. Supramolecular gelatin nanoparticles as matrix metalloproteinase responsive cancer cell imaging probes.
    Xu JH; Gao FP; Liu XF; Zeng Q; Guo SS; Tang ZY; Zhao XZ; Wang H
    Chem Commun (Camb); 2013 May; 49(40):4462-4. PubMed ID: 23508115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autofluorescent gelatin nanoparticles as imaging probes to monitor matrix metalloproteinase metabolism of cancer cells.
    Cai B; Rao L; Ji X; Bu LL; He Z; Wan D; Yang Y; Liu W; Guo S; Zhao XZ
    J Biomed Mater Res A; 2016 Nov; 104(11):2854-60. PubMed ID: 27376586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and optimization of gelatin nanoparticles using the miniemulsion process.
    Ethirajan A; Schoeller K; Musyanovych A; Ziener U; Landfester K
    Biomacromolecules; 2008 Sep; 9(9):2383-9. PubMed ID: 18666795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer.
    Al-Jamal WT; Al-Jamal KT; Bomans PH; Frederik PM; Kostarelos K
    Small; 2008 Sep; 4(9):1406-15. PubMed ID: 18711753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of gelatin nanospheres incorporating quantum dots and iron oxide nanoparticles for multimodal cell imaging.
    Murata Y; Jo JI; Tabata Y
    J Biomater Sci Polym Ed; 2017 Apr; 28(6):555-568. PubMed ID: 28142329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular design of an ultrahigh-intensity nanoparticle probe for cancer cell imaging and rapid visual detection of nucleic acids.
    Zhong H; Zhang R; Zhang H; Zhang S
    Chem Commun (Camb); 2012 Jun; 48(50):6277-9. PubMed ID: 22609826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional encapsulation of live cells by using a hybrid matrix of nanoparticles in a supramolecular hydrogel.
    Ikeda M; Ueno S; Matsumoto S; Shimizu Y; Komatsu H; Kusumoto K; Hamachi I
    Chemistry; 2008; 14(34):10808-15. PubMed ID: 18942699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerium oxide nanoparticle-mediated self-assembly of hybrid supramolecular hydrogels.
    Patil AJ; Krishna Kumar R; Barron NJ; Mann S
    Chem Commun (Camb); 2012 Aug; 48(64):7934-6. PubMed ID: 22763813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shaping supramolecular nanofibers with nanoparticles forming complementary hydrogen bonds.
    Puigmartí-Luis J; Pérez del Pino A; Laukhina E; Esquena J; Laukhin V; Rovira C; Vidal-Gancedo J; Kanaras AG; Nichols RJ; Brust M; Amabilino DB
    Angew Chem Int Ed Engl; 2008; 47(10):1861-5. PubMed ID: 18236497
    [No Abstract]   [Full Text] [Related]  

  • 10. Controllable synthesis, characterization and optical properties of colloidal PbS/gelatin core-shell nanocrystals.
    Mozafari M; Moztarzadeh F
    J Colloid Interface Sci; 2010 Nov; 351(2):442-8. PubMed ID: 20804985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocrystalline cellulose-porphyrin hybrids: synthesis, supramolecular properties, and singlet-oxygen production.
    Chauhan P; Hadad C; Sartorelli A; Zarattini M; Herreros-López A; Mba M; Maggini M; Prato M; Carofiglio T
    Chem Commun (Camb); 2013 Oct; 49(76):8525-7. PubMed ID: 23942658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular assembly of block copolypeptides with semiconductor nanocrystals.
    Atmaja B; Cha JN; Marshall A; Frank CW
    Langmuir; 2009 Jan; 25(2):707-15. PubMed ID: 19072205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells.
    Kohler N; Sun C; Wang J; Zhang M
    Langmuir; 2005 Sep; 21(19):8858-64. PubMed ID: 16142971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gelatin-albumin hybrid nanoparticles as matrix metalloproteinases-degradable delivery systems for breast cancer therapy.
    Shargh VH; Hondermarck H; Liang M
    Nanomedicine (Lond); 2017 May; 12(9):977-989. PubMed ID: 28440712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sonochemical syntheses of a nano-sized copper(II) supramolecule as a precursor for the synthesis of copper(II) oxide nanoparticles.
    Safarifard V; Morsali A
    Ultrason Sonochem; 2012 Jul; 19(4):823-9. PubMed ID: 22261473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular core-glycoshell polythiophene nanodots for targeted imaging and photodynamic therapy.
    Han HH; Wang CZ; Zang Y; Li J; James TD; He XP
    Chem Commun (Camb); 2017 Aug; 53(70):9793-9796. PubMed ID: 28817147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folate-mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticles.
    Schroeder JE; Shweky I; Shmeeda H; Banin U; Gabizon A
    J Control Release; 2007 Dec; 124(1-2):28-34. PubMed ID: 17928088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular Peptide/Surface Assembly for Monitoring Proteinase Activity and Cancer Diagnosis.
    Soum C; Rubio-Albenque S; Fery-Forgues S; Déléris G; Alouini MA; Berthelot T
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16967-75. PubMed ID: 26183395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical characterizations of high-quality quantum dot arrays via transfer printing.
    Lee S; Yoon D; Choi D; Kim TH
    Nanotechnology; 2013 Jan; 24(2):025702. PubMed ID: 23238085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gelatin nanoparticle preparation by nanoprecipitation.
    Lee EJ; Khan SA; Lim KH
    J Biomater Sci Polym Ed; 2011; 22(4-6):753-71. PubMed ID: 20566056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.