These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23508148)

  • 1. Comparative study on electro-microfiltration (EMF) of water containing different carbon nanotubes (CNTs).
    Weng YH; Wu HC; Li KC
    Water Sci Technol; 2013; 67(6):1247-53. PubMed ID: 23508148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of humic substances (HS) from water by electro-microfiltration (EMF).
    Weng YH; Li KC; Chaung-Hsieh LH; Huang CP
    Water Res; 2006 May; 40(9):1783-94. PubMed ID: 16616771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coagulation removal of humic acid-stabilized carbon nanotubes from water by PACl: influences of hydraulic condition and water chemistry.
    Ma S; Liu C; Yang K; Lin D
    Sci Total Environ; 2012 Nov; 439():123-8. PubMed ID: 23063917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Static and dynamic removal of aquatic natural organic matter by carbon nanotubes.
    Ajmani GS; Cho HH; Abbott Chalew TE; Schwab KJ; Jacangelo JG; Huang H
    Water Res; 2014 Aug; 59():262-70. PubMed ID: 24810742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of perfluorinated chemicals by electro-microfiltration.
    Tsai YT; Lin AY; Weng YH; Li KC
    Environ Sci Technol; 2010 Oct; 44(20):7914-20. PubMed ID: 20873735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of carbon nanotubes from aqueous environment with filter paper.
    Yang ST; Wang H; Wang Y; Wang Y; Nie H; Liu Y
    Chemosphere; 2011 Jan; 82(4):621-6. PubMed ID: 21071063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge.
    Grünheid S; Amy G; Jekel M
    Water Res; 2005 Sep; 39(14):3219-28. PubMed ID: 16024062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coating carbon nanotubes with humic acid using an eco-friendly mechanochemical method: Application for Cu(II) ions removal from water and aquatic ecotoxicity.
    Côa F; Strauss M; Clemente Z; Rodrigues Neto LL; Lopes JR; Alencar RS; Souza Filho AG; Alves OL; Castro VLSS; Barbieri E; Martinez DST
    Sci Total Environ; 2017 Dec; 607-608():1479-1486. PubMed ID: 28764138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size characterization of the associations between carbon nanotubes and humic acids in aqueous media by asymmetrical flow field-flow fractionation combined with multi-angle light scattering.
    Gigault J; Grassl B; Lespes G
    Chemosphere; 2012 Jan; 86(2):177-82. PubMed ID: 22079301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different types of carbon nanotube-based anodes to improve microbial fuel cell performance.
    Thepsuparungsikul N; Ng TC; Lefebvre O; Ng HY
    Water Sci Technol; 2014; 69(9):1900-10. PubMed ID: 24804666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of mercury from water by multi-walled carbon nanotubes.
    Tawabini B; Al-Khaldi S; Atieh M; Khaled M
    Water Sci Technol; 2010; 61(3):591-8. PubMed ID: 20150694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A settling curve modeling method for quantitative description of the dispersion stability of carbon nanotubes in aquatic environments.
    Zhou L; Zhu D; Zhang S; Pan B
    J Environ Sci (China); 2015 Mar; 29():1-10. PubMed ID: 25766007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of bisphenol A and 17α-ethinyl estradiol from landfill leachate using single-walled carbon nanotubes.
    Joseph L; Zaib Q; Khan IA; Berge ND; Park YG; Saleh NB; Yoon Y
    Water Res; 2011 Jul; 45(13):4056-68. PubMed ID: 21664640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-walled carbon nanotubes with selected properties for dynamic filtration of pharmaceuticals and personal care products.
    Wang Y; Ma J; Zhu J; Ye N; Zhang X; Huang H
    Water Res; 2016 Apr; 92():104-12. PubMed ID: 26845455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiwalled carbon nanotube filter: improving viral removal at low pressure.
    Brady-Estévez AS; Schnoor MH; Vecitis CD; Saleh NB; Elimelech M
    Langmuir; 2010 Sep; 26(18):14975-82. PubMed ID: 20795662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-bound humic acid increased Pb²⁺ sorption on carbon nanotubes.
    Lin D; Tian X; Li T; Zhang Z; He X; Xing B
    Environ Pollut; 2012 Aug; 167():138-47. PubMed ID: 22575094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term colloidal stability and metal leaching of single wall carbon nanotubes: effect of temperature and extracellular polymeric substances.
    Adeleye AS; Keller AA
    Water Res; 2014 Feb; 49():236-50. PubMed ID: 24342047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions.
    Alpatova AL; Shan W; Babica P; Upham BL; Rogensues AR; Masten SJ; Drown E; Mohanty AK; Alocilja EC; Tarabara VV
    Water Res; 2010 Jan; 44(2):505-20. PubMed ID: 19945136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of fulvic acid by carbon nanotubes from water.
    Yang K; Xing B
    Environ Pollut; 2009 Apr; 157(4):1095-100. PubMed ID: 19084305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of an integrated sponge--granular activated carbon fluidized bed bioreactor as pretreatment to microfiltration in wastewater reuse.
    Xing W; Ngo HH; Guo WS; Listowski A; Cullum P
    Bioresour Technol; 2012 Jun; 113():214-8. PubMed ID: 22397824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.