BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23508157)

  • 1. Seasonal nutrient uptake of plant biomass in a constructed wetland treating piggery wastewater effluent.
    Lee SY; Maniquiz MC; Choi JY; Jeong SM; Kim LH
    Water Sci Technol; 2013; 67(6):1317-23. PubMed ID: 23508157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suitability of macrophytes for nutrient removal from surface flow constructed wetlands receiving secondary treated sewage effluent in Queensland, Australia.
    Greenway M
    Water Sci Technol; 2003; 48(2):121-8. PubMed ID: 14510202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorus mass balance in a surface flow constructed wetland receiving piggery wastewater effluent.
    Lee SY; Maniquiz MC; Choi JY; Kang JH; Kim LH
    Water Sci Technol; 2012; 66(4):712-8. PubMed ID: 22766857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrient removal from piggery effluent using vertical flow constructed wetlands in southern Brazil.
    Sezerino PH; Reginatto V; Santos MA; Kayser K; Kunst S; Philippi LS; Soares HM
    Water Sci Technol; 2003; 48(2):129-35. PubMed ID: 14510203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutrient removal through autumn harvest of Phragmites australis and Thypha latifolia shoots in relation to nutrient loading in a wetland system used for polishing sewage treatment plant effluent.
    Toet S; Bouwman M; Cevaal A; Verhoeven JT
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(6-7):1133-56. PubMed ID: 15921271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactive effects of nitrogen and phosphorus loadings on nutrient removal from simulated wastewater using Schoenoplectus validus in wetland microcosms.
    Zhang Z; Rengel Z; Meney K
    Chemosphere; 2008 Aug; 72(11):1823-8. PubMed ID: 18561977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of vegetation (Typha latifolia) on nutrient removal in a horizontal subsurface-flow constructed wetland treating UASB reactor-trickling filter effluent.
    da Costa JF; Martins WL; Seidl M; von Sperling M
    Water Sci Technol; 2015; 71(7):1004-10. PubMed ID: 25860702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in plant biomass and nutrient removal over 3 years in a constructed wetland in Cairns, Australia.
    Greenway M; Woolley A
    Water Sci Technol; 2001; 44(11-12):303-10. PubMed ID: 11804111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Settling basin design in a constructed wetland using TSS removal efficiency and hydraulic retention time.
    Lee S; Maniquiz-Redillas MC; Kim LH
    J Environ Sci (China); 2014 Sep; 26(9):1791-6. PubMed ID: 25193826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Optimization of nitrogen and phosphorus removal in vertical subsurface flow constructed wetlands by using polypropylene pellet as part of substrate].
    Tang XQ; Li JZ; Li XJ; Liu XG; Huang SL
    Huan Jing Ke Xue; 2008 May; 29(5):1284-8. PubMed ID: 18624194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of pre-digested piggery wastewater treatment operations with surface flow integrated constructed wetland systems.
    Harrington C; Scholz M
    Bioresour Technol; 2010 Sep; 101(18):6950-60. PubMed ID: 20435471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen mass balance in a constructed wetland treating piggery wastewater effluent.
    Lee S; Maniquiz-Redillas MC; Choi J; Kim LH
    J Environ Sci (China); 2014 Jun; 26(6):1260-6. PubMed ID: 25079834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of nutrient retention in a stormwater wetland during dry and wet days.
    Yi Q; Lu W; Yu J; Kim Y
    Water Sci Technol; 2010; 61(6):1535-45. PubMed ID: 20351433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of nutrients in various types of constructed wetlands.
    Vymazal J
    Sci Total Environ; 2007 Jul; 380(1-3):48-65. PubMed ID: 17078997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stormwater nutrient attenuation in a constructed wetland with alternating surface and subsurface flow pathways: Event to annual dynamics.
    Adyel TM; Oldham CE; Hipsey MR
    Water Res; 2016 Dec; 107():66-82. PubMed ID: 27837734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of wastewater discharge on biomass production and nutrient content of Cyperus papyrus and Miscanthidium violaceum in the Nakivubo wetland, Kampala, Uganda.
    Kansiime F; Nalubega M; van Bruggen JJ; Denny P
    Water Sci Technol; 2003; 48(5):233-40. PubMed ID: 14621169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of nutrient cycling in a surface-flow constructed wetland and in a facultative pond treating secondary effluent.
    Sajn Slak A; Bulc TG; Vrhovsek D
    Water Sci Technol; 2005; 51(12):291-8. PubMed ID: 16114697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant senescence: a mechanism for nutrient release in temperate agricultural wetlands.
    Kröger R; Holland MM; Moore MT; Cooper CM
    Environ Pollut; 2007 Mar; 146(1):114-9. PubMed ID: 16905226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China.
    Li L; Li Y; Biswas DK; Nian Y; Jiang G
    Bioresour Technol; 2008 Apr; 99(6):1656-63. PubMed ID: 17532209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vegetation effects on floating treatment wetland nutrient removal and harvesting strategies in urban stormwater ponds.
    Wang CY; Sample DJ; Bell C
    Sci Total Environ; 2014 Nov; 499():384-93. PubMed ID: 25214393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.