These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23508164)

  • 1. Analysis of greenhouse gas emissions from 10 biogas plants within the agricultural sector.
    Liebetrau J; Reinelt T; Clemens J; Hafermann C; Friehe J; Weiland P
    Water Sci Technol; 2013; 67(6):1370-9. PubMed ID: 23508164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic digestion of agricultural and other substrates--implications for greenhouse gas emissions.
    Pucker J; Jungmeier G; Siegl S; Pötsch EM
    Animal; 2013 Jun; 7 Suppl 2():283-91. PubMed ID: 23739470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process.
    Bacenetti J; Negri M; Fiala M; González-García S
    Sci Total Environ; 2013 Oct; 463-464():541-51. PubMed ID: 23831800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methane losses from different biogas plant technologies.
    Wechselberger V; Reinelt T; Yngvesson J; Scharfy D; Scheutz C; Huber-Humer M; Hrad M
    Waste Manag; 2023 Feb; 157():110-120. PubMed ID: 36529031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life-cycle energy production and emissions mitigation by comprehensive biogas-digestate utilization.
    Chen S; Chen B; Song D
    Bioresour Technol; 2012 Jun; 114():357-64. PubMed ID: 22513252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways.
    Rehl T; Müller J
    J Environ Manage; 2013 Jan; 114():13-25. PubMed ID: 23201601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in greenhouse gas balance and resource demand of biogas plants in southern Germany after a period of three years.
    Bachmaier H; Effenberger M; Gronauer A; Boxberger J
    Waste Manag Res; 2013 Apr; 31(4):368-75. PubMed ID: 23129609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agricultural opportunities to mitigate greenhouse gas emissions.
    Johnson JM; Franzluebbers AJ; Weyers SL; Reicosky DC
    Environ Pollut; 2007 Nov; 150(1):107-24. PubMed ID: 17706849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perspectives on greenhouse gas emission estimates based on Australian wastewater treatment plant operating data.
    de Haas DW; Pepperell C; Foley J
    Water Sci Technol; 2014; 69(3):451-63. PubMed ID: 24552715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trends in greenhouse gas emissions from consumption and production of animal food products - implications for long-term climate targets.
    Cederberg C; Hedenus F; Wirsenius S; Sonesson U
    Animal; 2013 Feb; 7(2):330-40. PubMed ID: 23031741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective.
    Tilche A; Galatola M
    Water Sci Technol; 2008; 57(11):1683-92. PubMed ID: 18547917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fugitive methane emissions from two agricultural biogas plants.
    Baldé H; Wagner-Riddle C; MacDonald D; VanderZaag A
    Waste Manag; 2022 Sep; 151():123-130. PubMed ID: 35944429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogas production: current state and perspectives.
    Weiland P
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):849-60. PubMed ID: 19777226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of greenhouse gas generation in wastewater treatment plants--model development and application.
    Bani Shahabadi M; Yerushalmi L; Haghighat F
    Chemosphere; 2010 Feb; 78(9):1085-92. PubMed ID: 20110104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Danish national effort to minimise methane emissions from biogas plants.
    Michael Fredenslund A; Gudmundsson E; Maria Falk J; Scheutz C
    Waste Manag; 2023 Feb; 157():321-329. PubMed ID: 36592586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of on-farm biodiesel production with anaerobic digestion to maximise energy yield and greenhouse gas savings from process and farm residues.
    Heaven S; Salter AM; Banks CJ
    Bioresour Technol; 2011 Sep; 102(17):7784-93. PubMed ID: 21719281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developments in greenhouse gas emissions and net energy use in Danish agriculture - how to achieve substantial CO(2) reductions?
    Dalgaard T; Olesen JE; Petersen SO; Petersen BM; Jørgensen U; Kristensen T; Hutchings NJ; Gyldenkærne S; Hermansen JE
    Environ Pollut; 2011 Nov; 159(11):3193-203. PubMed ID: 21454001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative life cycle assessment of biogas plant configurations for a demand oriented biogas supply for flexible power generation.
    Hahn H; Hartmann K; Bühle L; Wachendorf M
    Bioresour Technol; 2015 Mar; 179():348-358. PubMed ID: 25553565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methane emissions from digestate at an agricultural biogas plant.
    Baldé H; VanderZaag AC; Burtt SD; Wagner-Riddle C; Crolla A; Desjardins RL; MacDonald DJ
    Bioresour Technol; 2016 Sep; 216():914-22. PubMed ID: 27323243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Greenhouse gas emissions from conventional, agri-environmental scheme, and organic Irish suckler-beef units.
    Casey JW; Holden NM
    J Environ Qual; 2006; 35(1):231-9. PubMed ID: 16397099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.