BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23508634)

  • 1. A progressive rupture model of soft tissue stress relaxation.
    Bates JH; Ma B
    Ann Biomed Eng; 2013 Jun; 41(6):1129-38. PubMed ID: 23508634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A recruitment model of quasi-linear power-law stress adaptation in lung tissue.
    Bates JH
    Ann Biomed Eng; 2007 Jul; 35(7):1165-74. PubMed ID: 17380389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain-dependent stress relaxation behavior of healthy right ventricular free wall.
    Liu W; Labus KM; Ahern M; LeBar K; Avazmohammadi R; Puttlitz CM; Wang Z
    Acta Biomater; 2022 Oct; 152():290-299. PubMed ID: 36030049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain-Level Dependent Nonequilibrium Anisotropic Viscoelasticity: Application to the Abdominal Muscle.
    Latorre M; Montáns FJ
    J Biomech Eng; 2017 Oct; 139(10):. PubMed ID: 28753687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical model for viscoelastic properties of biological soft tissue.
    Xi M; Yun G; Narsu B
    Theory Biosci; 2022 Feb; 141(1):13-25. PubMed ID: 35112309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress relaxation and stress-strain characteristics of porcine amniotic membrane.
    Kikuchi M; Feng Z; Kosawada T; Sato D; Nakamura T; Umezu M
    Biomed Mater Eng; 2016; 27(6):603-611. PubMed ID: 28234244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperelastic and viscoelastic characterization of hepatic tissue under uniaxial tension in time and frequency domain.
    Estermann SJ; Pahr DH; Reisinger A
    J Mech Behav Biomed Mater; 2020 Dec; 112():104038. PubMed ID: 32889334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A finite nonlinear hyper-viscoelastic model for soft biological tissues.
    Panda SK; Buist ML
    J Biomech; 2018 Mar; 69():121-128. PubMed ID: 29397112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress relaxation and recovery in tendon and ligament: experiment and modeling.
    Duenwald SE; Vanderby R; Lakes RS
    Biorheology; 2010; 47(1):1-14. PubMed ID: 20448294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A constituent-based model for the nonlinear viscoelastic behavior of ligaments.
    Vena P; Gastaldi D; Contro R
    J Biomech Eng; 2006 Jun; 128(3):449-57. PubMed ID: 16706595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasi-linear viscoelastic theory.
    Abramowitch SD; Woo SL
    J Biomech Eng; 2004 Feb; 126(1):92-7. PubMed ID: 15171134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage.
    Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA
    J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quasi-linear, viscoelastic, structural model of the plantar soft tissue with frequency-sensitive damping properties.
    Ledoux WR; Meaney DF; Hillstrom HJ
    J Biomech Eng; 2004 Dec; 126(6):831-7. PubMed ID: 15796342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The prediction of stress-relaxation of ligaments and tendons using the quasi-linear viscoelastic model.
    Defrate LE; Li G
    Biomech Model Mechanobiol; 2007 Jul; 6(4):245-51. PubMed ID: 16941137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscoelasticity reduces the dynamic stresses and strains in the vessel wall: implications for vessel fatigue.
    Zhang W; Liu Y; Kassab GS
    Am J Physiol Heart Circ Physiol; 2007 Oct; 293(4):H2355-60. PubMed ID: 17604330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasi-linear viscoelastic properties of fibrotic neck tissues obtained from ultrasound indentation tests in vivo.
    Huang YP; Zheng YP; Leung SF
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):145-54. PubMed ID: 15621318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo.
    Then C; Stassen B; Depta K; Silber G
    J Mech Behav Biomed Mater; 2017 Jul; 71():68-79. PubMed ID: 28259786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An inverse power-law distribution of molecular bond lifetimes predicts fractional derivative viscoelasticity in biological tissue.
    Palmer BM; Tanner BC; Toth MJ; Miller MS
    Biophys J; 2013 Jun; 104(11):2540-52. PubMed ID: 23746527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-dimensional visco-hyperelastic FE model for simulating the mechanical dynamic response of preloaded phalanges.
    Noël C
    Med Eng Phys; 2018 Nov; 61():41-50. PubMed ID: 30262138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress relaxation of porcine tendon under simulated biological environment: experiment and modeling.
    Łagan SD; Liber-Kneć A
    Acta Bioeng Biomech; 2021; 23(1):59-68. PubMed ID: 34846046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.