These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 23508650)
1. Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Foo E; Ross JJ; Jones WT; Reid JB Ann Bot; 2013 May; 111(5):769-79. PubMed ID: 23508650 [TBL] [Abstract][Full Text] [Related]
2. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea. Foo E; McAdam EL; Weller JL; Reid JB J Exp Bot; 2016 Apr; 67(8):2413-24. PubMed ID: 26889005 [TBL] [Abstract][Full Text] [Related]
3. Auxin influences strigolactones in pea mycorrhizal symbiosis. Foo E J Plant Physiol; 2013 Mar; 170(5):523-8. PubMed ID: 23219475 [TBL] [Abstract][Full Text] [Related]
4. Brassinosteroids Benefit Plants Performance by Augmenting Arbuscular Mycorrhizal Symbiosis. Ren Y; Che X; Liang J; Wang S; Han L; Liu Z; Chen H; Tang M Microbiol Spectr; 2021 Dec; 9(3):e0164521. PubMed ID: 34908500 [TBL] [Abstract][Full Text] [Related]
5. Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus. Takeda N; Handa Y; Tsuzuki S; Kojima M; Sakakibara H; Kawaguchi M Plant Physiol; 2015 Feb; 167(2):545-57. PubMed ID: 25527715 [TBL] [Abstract][Full Text] [Related]
6. The influence of ethylene, gibberellins and brassinosteroids on energy and nitrogen-fixation metabolites in nodule tissue. McGuiness PN; Reid JB; Foo E Plant Sci; 2021 Apr; 305():110846. PubMed ID: 33691972 [TBL] [Abstract][Full Text] [Related]
7. Phytohormones Regulate the Development of Arbuscular Mycorrhizal Symbiosis. Liao D; Wang S; Cui M; Liu J; Chen A; Xu G Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30322086 [TBL] [Abstract][Full Text] [Related]
8. Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Foo E; Yoneyama K; Hugill CJ; Quittenden LJ; Reid JB Mol Plant; 2013 Jan; 6(1):76-87. PubMed ID: 23066094 [TBL] [Abstract][Full Text] [Related]
9. E151 (sym15), a pleiotropic mutant of pea (Pisum sativum L.), displays low nodule number, enhanced mycorrhizae, delayed lateral root emergence, and high root cytokinin levels. Jones JM; Clairmont L; Macdonald ES; Weiner CA; Emery RJ; Guinel FC J Exp Bot; 2015 Jul; 66(13):4047-59. PubMed ID: 25948707 [TBL] [Abstract][Full Text] [Related]
10. The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis. Liao D; Chen X; Chen A; Wang H; Liu J; Liu J; Gu M; Sun S; Xu G Plant Cell Physiol; 2015 Apr; 56(4):674-87. PubMed ID: 25535196 [TBL] [Abstract][Full Text] [Related]
11. First report of the inhibition of arbuscular mycorrhizal infection of Pisum sativum by specific and irreversible inhibition of polyamine biosynthesis or by gibberellic acid treatment. El Ghachtouli N; Martin-Tanguy J; Paynot M; Gianinazzi S FEBS Lett; 1996 May; 385(3):189-92. PubMed ID: 8647248 [TBL] [Abstract][Full Text] [Related]
12. The Pea DELLA proteins LA and CRY are important regulators of gibberellin synthesis and root growth. Weston DE; Elliott RC; Lester DR; Rameau C; Reid JB; Murfet IC; Ross JJ Plant Physiol; 2008 May; 147(1):199-205. PubMed ID: 18375599 [TBL] [Abstract][Full Text] [Related]
13. Common and divergent shoot-root signalling in legume symbioses. Foo E; Heynen EM; Reid JB New Phytol; 2016 Apr; 210(2):643-56. PubMed ID: 26661110 [TBL] [Abstract][Full Text] [Related]
14. Gibberellin Promotes Fungal Entry and Colonization during Paris-Type Arbuscular Mycorrhizal Symbiosis in Eustoma grandiflorum. Tominaga T; Miura C; Takeda N; Kanno Y; Takemura Y; Seo M; Yamato M; Kaminaka H Plant Cell Physiol; 2020 Mar; 61(3):565-575. PubMed ID: 31790118 [TBL] [Abstract][Full Text] [Related]
15. Gibberellins promote nodule organogenesis but inhibit the infection stages of nodulation. McAdam EL; Reid JB; Foo E J Exp Bot; 2018 Apr; 69(8):2117-2130. PubMed ID: 29432555 [TBL] [Abstract][Full Text] [Related]
16. Application of Strigolactones to Plant Roots to Influence Formation of Symbioses. Foo E Methods Mol Biol; 2021; 2309():179-187. PubMed ID: 34028687 [TBL] [Abstract][Full Text] [Related]
17. Analysis of nodule senescence in pea (Pisum sativum L.) using laser microdissection, real-time PCR, and ACC immunolocalization. Serova TA; Tikhonovich IA; Tsyganov VE J Plant Physiol; 2017 May; 212():29-44. PubMed ID: 28242415 [TBL] [Abstract][Full Text] [Related]
19. Ethylene and jasmonic acid act as negative modulators during mutualistic symbiosis between Laccaria bicolor and Populus roots. Plett JM; Khachane A; Ouassou M; Sundberg B; Kohler A; Martin F New Phytol; 2014 Apr; 202(1):270-286. PubMed ID: 24383411 [TBL] [Abstract][Full Text] [Related]
20. Effect of mutations in the pea genes Sym33 and Sym40. I. Arbuscular mycorrhiza formation and function. Jacobi LM; Petrova OS; Tsyganov VE; Borisov AY; Tikhonovich IA Mycorrhiza; 2003 Mar; 13(1):3-7. PubMed ID: 12634913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]