These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23508720)

  • 1. A random forest approach for competing risks based on pseudo-values.
    Mogensen UB; Gerds TA
    Stat Med; 2013 Aug; 32(18):3102-14. PubMed ID: 23508720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tree-based models for survival data with competing risks.
    Kretowska M
    Comput Methods Programs Biomed; 2018 Jun; 159():185-198. PubMed ID: 29650312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic pseudo-observations: a robust approach to dynamic prediction in competing risks.
    Nicolaie MA; van Houwelingen JC; de Witte TM; Putter H
    Biometrics; 2013 Dec; 69(4):1043-52. PubMed ID: 23865523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of the conditional inference survival forest model to random survival forests based on a simulation study as well as on two applications with time-to-event data.
    Nasejje JB; Mwambi H; Dheda K; Lesosky M
    BMC Med Res Methodol; 2017 Jul; 17(1):115. PubMed ID: 28754093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calibration plots for risk prediction models in the presence of competing risks.
    Gerds TA; Andersen PK; Kattan MW
    Stat Med; 2014 Aug; 33(18):3191-203. PubMed ID: 24668611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unbiased split variable selection for random survival forests using maximally selected rank statistics.
    Wright MN; Dankowski T; Ziegler A
    Stat Med; 2017 Apr; 36(8):1272-1284. PubMed ID: 28088842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying the predictive accuracy of time-to-event models in the presence of competing risks.
    Schoop R; Beyersmann J; Schumacher M; Binder H
    Biom J; 2011 Feb; 53(1):88-112. PubMed ID: 21259311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A partitioning deletion/substitution/addition algorithm for creating survival risk groups.
    Lostritto K; Strawderman RL; Molinaro AM
    Biometrics; 2012 Dec; 68(4):1146-56. PubMed ID: 22519965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stagewise pseudo-value regression for time-varying effects on the cumulative incidence.
    Zöller D; Schmidtmann I; Weinmann A; Gerds TA; Binder H
    Stat Med; 2016 Mar; 35(7):1144-58. PubMed ID: 26510388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of variable selection methods for high-dimensional survival data with competing events.
    Gilhodes J; Zemmour C; Ajana S; Martinez A; Delord JP; Leconte E; Boher JM; Filleron T
    Comput Biol Med; 2017 Dec; 91():159-167. PubMed ID: 29078093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying representative trees from ensembles.
    Banerjee M; Ding Y; Noone AM
    Stat Med; 2012 Jul; 31(15):1601-16. PubMed ID: 22302520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Random survival forest with space extensions for censored data.
    Wang H; Zhou L
    Artif Intell Med; 2017 Jun; 79():52-61. PubMed ID: 28641924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Personalized Risk Prediction in Clinical Oncology Research: Applications and Practical Issues Using Survival Trees and Random Forests.
    Hu C; Steingrimsson JA
    J Biopharm Stat; 2018; 28(2):333-349. PubMed ID: 29048993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multinomial logistic regression ensembles.
    Lee K; Ahn H; Moon H; Kodell RL; Chen JJ
    J Biopharm Stat; 2013 May; 23(3):681-94. PubMed ID: 23611203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Survival Forests with R-Squared Splitting Rules.
    Wang H; Chen X; Li G
    J Comput Biol; 2018 Apr; 25(4):388-395. PubMed ID: 29265882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structured additive regression for categorical space-time data: a mixed model approach.
    Kneib T; Fahrmeir L
    Biometrics; 2006 Mar; 62(1):109-18. PubMed ID: 16542236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical risk prediction with random forests for survival, longitudinal, and multivariate (RF-SLAM) data analysis.
    Wongvibulsin S; Wu KC; Zeger SL
    BMC Med Res Methodol; 2019 Dec; 20(1):1. PubMed ID: 31888507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction intervals with random forests.
    Roy MH; Larocque D
    Stat Methods Med Res; 2020 Jan; 29(1):205-229. PubMed ID: 30786820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model selection in competing risks regression.
    Kuk D; Varadhan R
    Stat Med; 2013 Aug; 32(18):3077-88. PubMed ID: 23436643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating competing risks data in survival analysis.
    Beyersmann J; Latouche A; Buchholz A; Schumacher M
    Stat Med; 2009 Mar; 28(6):956-71. PubMed ID: 19125387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.