These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 23509072)

  • 1. A novel single-cell screening platform reveals proteome plasticity during yeast stress responses.
    Breker M; Gymrek M; Schuldiner M
    J Cell Biol; 2013 Mar; 200(6):839-50. PubMed ID: 23509072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LoQAtE--Localization and Quantitation ATlas of the yeast proteomE. A new tool for multiparametric dissection of single-protein behavior in response to biological perturbations in yeast.
    Breker M; Gymrek M; Moldavski O; Schuldiner M
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D726-30. PubMed ID: 24150937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the Saccharomyces cerevisiae Spatial Proteome with High Resolution Using hyperLOPIT.
    Nightingale DJH; Oliver SG; Lilley KS
    Methods Mol Biol; 2019; 2049():165-190. PubMed ID: 31602611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteome-wide screens in Saccharomyces cerevisiae using the yeast GFP collection.
    Chong YT; Cox MJ; Andrews B
    Adv Exp Med Biol; 2012; 736():169-78. PubMed ID: 22161327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast Proteome Dynamics from Single Cell Imaging and Automated Analysis.
    Chong YT; Koh JL; Friesen H; Duffy SK; Cox MJ; Moses A; Moffat J; Boone C; Andrews BJ
    Cell; 2015 Jun; 161(6):1413-24. PubMed ID: 26046442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution mapping of protein concentration reveals principles of proteome architecture and adaptation.
    Levy ED; Kowarzyk J; Michnick SW
    Cell Rep; 2014 May; 7(4):1333-40. PubMed ID: 24813894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CYCLoPs: A Comprehensive Database Constructed from Automated Analysis of Protein Abundance and Subcellular Localization Patterns in Saccharomyces cerevisiae.
    Koh JL; Chong YT; Friesen H; Moses A; Boone C; Andrews BJ; Moffat J
    G3 (Bethesda); 2015 Apr; 5(6):1223-32. PubMed ID: 26048563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chemostat array enables the spatio-temporal analysis of the yeast proteome.
    Dénervaud N; Becker J; Delgado-Gonzalo R; Damay P; Rajkumar AS; Unser M; Shore D; Naef F; Maerkl SJ
    Proc Natl Acad Sci U S A; 2013 Sep; 110(39):15842-7. PubMed ID: 24019481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. YeastRGB: comparing the abundance and localization of yeast proteins across cells and libraries.
    Dubreuil B; Sass E; Nadav Y; Heidenreich M; Georgeson JM; Weill U; Duan Y; Meurer M; Schuldiner M; Knop M; Levy ED
    Nucleic Acids Res; 2019 Jan; 47(D1):D1245-D1249. PubMed ID: 30357397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap.
    Nagaraj N; Kulak NA; Cox J; Neuhauser N; Mayr K; Hoerning O; Vorm O; Mann M
    Mol Cell Proteomics; 2012 Mar; 11(3):M111.013722. PubMed ID: 22021278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of D10-Leu metabolic labeling coupled with MALDI-MS analysis in studying the response of the yeast proteome to H2O2 challenge.
    Jiang H; English AM
    J Proteome Res; 2006 Oct; 5(10):2539-46. PubMed ID: 17022625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes.
    de Groot MJL; Daran-Lapujade P; van Breukelen B; Knijnenburg TA; de Hulster EAF; Reinders MJT; Pronk JT; Heck AJR; Slijper M
    Microbiology (Reading); 2007 Nov; 153(Pt 11):3864-3878. PubMed ID: 17975095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome survey reveals modularity of the yeast cell machinery.
    Gavin AC; Aloy P; Grandi P; Krause R; Boesche M; Marzioch M; Rau C; Jensen LJ; Bastuck S; Dümpelfeld B; Edelmann A; Heurtier MA; Hoffman V; Hoefert C; Klein K; Hudak M; Michon AM; Schelder M; Schirle M; Remor M; Rudi T; Hooper S; Bauer A; Bouwmeester T; Casari G; Drewes G; Neubauer G; Rick JM; Kuster B; Bork P; Russell RB; Superti-Furga G
    Nature; 2006 Mar; 440(7084):631-6. PubMed ID: 16429126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome-scale movements and compartment connectivity during the eukaryotic cell cycle.
    Litsios A; Grys BT; Kraus OZ; Friesen H; Ross C; Masinas MPD; Forster DT; Couvillion MT; Timmermann S; Billmann M; Myers C; Johnsson N; Churchman LS; Boone C; Andrews BJ
    Cell; 2024 Mar; 187(6):1490-1507.e21. PubMed ID: 38452761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise.
    Newman JR; Ghaemmaghami S; Ihmels J; Breslow DK; Noble M; DeRisi JL; Weissman JS
    Nature; 2006 Jun; 441(7095):840-6. PubMed ID: 16699522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dynamic model of proteome changes reveals new roles for transcript alteration in yeast.
    Lee MV; Topper SE; Hubler SL; Hose J; Wenger CD; Coon JJ; Gasch AP
    Mol Syst Biol; 2011 Jul; 7():514. PubMed ID: 21772262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Proteomics Analysis Reveals Unique Early Signaling Response of
    Pandey P; Zaman K; Prokai L; Shulaev V
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33375274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources.
    Zhao S; Zhao X; Zou H; Fu J; Du G; Zhou J; Chen J
    J Proteomics; 2014 Apr; 101():102-12. PubMed ID: 24530623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Playing tag with the yeast proteome.
    Andrews BJ; Bader GD; Boone C
    Nat Biotechnol; 2003 Nov; 21(11):1297-9. PubMed ID: 14595360
    [No Abstract]   [Full Text] [Related]  

  • 20. A proteome-integrated, carbon source dependent genetic regulatory network in Saccharomyces cerevisiae.
    Garcia-Albornoz M; Holman SW; Antonisse T; Daran-Lapujade P; Teusink B; Beynon RJ; Hubbard SJ
    Mol Omics; 2020 Feb; 16(1):59-72. PubMed ID: 31868867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.