These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 23509256)

  • 1. Effects of cochlear loading on the motility of active outer hair cells.
    Ó Maoiléidigh D; Hudspeth AJ
    Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5474-9. PubMed ID: 23509256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Somatic motility and hair bundle mechanics, are both necessary for cochlear amplification?
    Peng AW; Ricci AJ
    Hear Res; 2011 Mar; 273(1-2):109-22. PubMed ID: 20430075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interplay between active hair bundle motility and electromotility in the cochlea.
    O Maoiléidigh D; Jülicher F
    J Acoust Soc Am; 2010 Sep; 128(3):1175-90. PubMed ID: 20815454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motility-associated hair-bundle motion in mammalian outer hair cells.
    Jia S; He DZ
    Nat Neurosci; 2005 Aug; 8(8):1028-34. PubMed ID: 16041370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active hair bundle movements in auditory hair cells.
    Fettiplace R
    J Physiol; 2006 Oct; 576(Pt 1):29-36. PubMed ID: 16887874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The frequency limit of outer hair cell motility measured in vivo.
    Vavakou A; Cooper NP; van der Heijden M
    Elife; 2019 Sep; 8():. PubMed ID: 31547906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Gap-Junction Mutation Reveals That Outer Hair Cell Extracellular Receptor Potentials Drive High-Frequency Cochlear Amplification.
    Levic S; Lukashkina VA; Simões P; Lukashkin AN; Russell IJ
    J Neurosci; 2022 Oct; 42(42):7875-7884. PubMed ID: 36261265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging electrically evoked micromechanical motion within the organ of corti of the excised gerbil cochlea.
    Karavitaki KD; Mountain DC
    Biophys J; 2007 May; 92(9):3294-316. PubMed ID: 17277194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MET currents and otoacoustic emissions from mice with a detached tectorial membrane indicate the extracellular matrix regulates Ca
    Jeng JY; Harasztosi C; Carlton AJ; Corns LF; Marchetta P; Johnson SL; Goodyear RJ; Legan KP; Rüttiger L; Richardson GP; Marcotti W
    J Physiol; 2021 Apr; 599(7):2015-2036. PubMed ID: 33559882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplification and Suppression of Traveling Waves along the Mouse Organ of Corti: Evidence for Spatial Variation in the Longitudinal Coupling of Outer Hair Cell-Generated Forces.
    Dewey JB; Applegate BE; Oghalai JS
    J Neurosci; 2019 Mar; 39(10):1805-1816. PubMed ID: 30651330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cochlear amplification, outer hair cells and prestin.
    Dallos P
    Curr Opin Neurobiol; 2008 Aug; 18(4):370-6. PubMed ID: 18809494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The physics of hearing: fluid mechanics and the active process of the inner ear.
    Reichenbach T; Hudspeth AJ
    Rep Prog Phys; 2014 Jul; 77(7):076601. PubMed ID: 25006839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanoelectrical transduction of adult outer hair cells studied in a gerbil hemicochlea.
    He DZ; Jia S; Dallos P
    Nature; 2004 Jun; 429(6993):766-70. PubMed ID: 15201911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cochlear outer hair cell electromotility enhances organ of Corti motion on a cycle-by-cycle basis at high frequencies in vivo.
    Dewey JB; Altoè A; Shera CA; Applegate BE; Oghalai JS
    Proc Natl Acad Sci U S A; 2021 Oct; 118(43):. PubMed ID: 34686590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification.
    Dallos P; Wu X; Cheatham MA; Gao J; Zheng J; Anderson CT; Jia S; Wang X; Cheng WH; Sengupta S; He DZ; Zuo J
    Neuron; 2008 May; 58(3):333-9. PubMed ID: 18466744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating the active process of hair cells with cochlear function.
    Hudspeth AJ
    Nat Rev Neurosci; 2014 Sep; 15(9):600-14. PubMed ID: 25096182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cochlear amplifier: augmentation of the traveling wave within the inner ear.
    Oghalai JS
    Curr Opin Otolaryngol Head Neck Surg; 2004 Oct; 12(5):431-8. PubMed ID: 15377957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling active hair bundle mechanics, fast adaptation, and somatic motility in a cochlear model.
    Meaud J; Grosh K
    Biophys J; 2011 Jun; 100(11):2576-85. PubMed ID: 21641302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unloading outer hair cell bundles in vivo does not yield evidence of spontaneous oscillations in the mouse cochlea.
    Quiñones PM; Meenderink SWF; Applegate BE; Oghalai JS
    Hear Res; 2022 Sep; 423():108473. PubMed ID: 35287989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti.
    Lee HY; Raphael PD; Xia A; Kim J; Grillet N; Applegate BE; Ellerbee Bowden AK; Oghalai JS
    J Neurosci; 2016 Aug; 36(31):8160-73. PubMed ID: 27488636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.